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Introduction

 What is Visual Object Tracking?

_- Visual information: 83% I

_-~ Auditory information: 11%

#—=-== QOlfactory information: 3.5%
~ ==~ Taste information: 1%

Tactile information: 1.5%

Humans are “visual animals”

Static Visual Ability -
(sva) ~°

Detection,
recognition,
classification

Dynamic Visual Ability
(DVA)

Tracking

Visual object tracking (single object tracking) is a basic
function of the human dynamic visual system.




Introduction
 What is Visual Object Tracking?

t=1
first frame: video sequence:
initialization continuous tracking Dynamic Visual Ability (DVA)

» Definition: Provides only the initial position of a moving object, and
continuously locates it in a video sequence.

» Characteristics:
e Sequential decision: locating the target with the help of previous frames

* Category agnostic: without any assumption about the target category
(open-set setting)

* Instance-level prediction: need to distinguish the target from others
(including objects in the same category)



Introduction
e Why is VOT Important?

» Real-world demands: More intelligent and robust visual tracking systems are
needed to adapt to complex real-world environments.

Autonomous driving: Video surveillance: Robot vision:

Tracking vehicles or Real-time tracking of Robots track objects
pedestrians to ensure suspicious targets in through vision systems
road safety. security systems. to interact with the

environment.



Introduction
* Why is VOT Important?
» Academic hotspots:

* The graph shows a consistent growth in publications related to “object
tracking” over the past decade. Despite minor fluctuations, the overall trend
is upward, indicating sustained interest and ongoing research in the field.

* This growth reflects the increasing attention to visual object tracking, driven
by advancements in deep learning and Al technologies.

Publications
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Increasing number of publications in object tracking from 2014 to 2023. (Data
from Web of Science, allintitle: object tracking.)



Importance of Evaluation Techniques

* Lagging Evaluation Techniques

» Inadequate Current Evaluation Standards: Most evaluations focus on
performance but ignore intelligence. The evaluation is restricted to machine-
to-machine comparisons within simple environments.

* Environment: Current evaluations often
use simple and controlled environments,
which fail to represent the complexities of

Simple real-world scenarios.

Environment

e Executor: The focus is mainly on the
machine’s performance, with little
consideration for human capabilities.

* Evaluation: Most systems rely on
machine-to-machine comparisons, which

Machine-
machin
k""ﬁmfm do not fully reflect human-level
: intelligence or decision-making processes.




Importance of Evaluation Techniques

* Lagging Evaluation Techniques

» Inadequate Current Evaluation Standards: Most evaluations focus on
performance but ignore intelligence. The evaluation is restricted to machine-
to-machine comparisons within simple environments.

/

Include human /
Simple factors for more Qpen

Environment

EnV| ronment

intelligent evaluation
techniques

Human-
machine
Comparison

Machine-
machine
Comparison

 The environment is more open and reflects real-world complexities.

 There is comparison between humans and machines, making the
evaluation process more holistic.



I Importance of Evaluation Techniques

* Importance of Visual Intelligence Evaluation

» Performance Bottlenecks of Algorithms: Evaluation techniques can reveal
weaknesses in algorithms across different scenarios and provide feedback
for design optimization.

e Pascaz

PASCAL VOC
2013 : 2017
2005 2012 ¢ 2014 2015 :
IMAGENET
| ISVRC | VOT
. vor |

Famous competitions that have advanced computer vision



Importance of Evaluation Techniques

* Importance of Visual Intelligence Evaluation

» Future Outlook:The advancement of Al and visual intelligence depends on
advanced evaluation techniques. Only through scientific evaluation can we
ensure that advancements in Al and visual intelligence continue at the
current pace. Evaluation not only drives innovation but also helps ensure
that algorithms meet the complex demands of real-world applications.
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Increasing number of publications and citations in computer
vision evaluation from 1984 to 2023. (Data from Web of

Science, allintitle: computer vision evaluation.)
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I Structure and Goals of the Tutorial

* Structure
» Introduction (this section)

» Part 1. Task Definitions and Challenges: A deep dive into the
foundations and challenges of object tracking.

» Part 2. Categorization of Evaluation Environments: Examination of the
environments used for evaluating tracking algorithms.

» Part 3. Algorithms and Traditional Machine-Machine Comparisons:
Analysis of existing algorithms and their performance comparisons.

» Part 4. Human Visual Abilities and Visual Turing Test: Discussion on
human-machine comparison frameworks and the introduction of the
Visual Turing Test concept.

> Trends and Future Directions

»

i) QI G =

8. Hu, X. Zhao#, and K. Huang, “Sotverse: A user-defined task space of single object tracking,” International Journal of

Computer Vision (IJCV), 2024.



I Structure and Goals of the Tutorial

e Goals

» Help participants understand visual intelligence evaluation techniques in
visual object tracking.

» Discuss the strengths and weaknesses of existing evaluation mechanisms
and offer directions for improvement.

» Inspire future research in visual tracking.

Expected Takeaways:

Through this tutorial, participants will gain a
comprehensive understanding of visual intelligence
evaluation techniques.




* Part 1. Visual Object Tracking Task

— Task Definition

— Task Challenge

CONTENTS
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Task Definition

Explore the fundamental definitions that shape
how we approach human visual tracking ability.



I Task: Short-term Tracking (STT)

Visual/Single Object Tracking (VOT/SOT) Human
_— . . . Visual
* Characteristics: Sequential decision, )
odel J _Tracking _

category agnostic, instance-level prediction.

. hidden constraints

Characteristics of STT (based on VOT challenge):
» Single-target

» Model-free

» _Causakrelationship

'}’ Short-term \\‘ extra task

‘> Single-camera / constraints

~

o ———

A STT demo (=30s, in single camera)
Definition: Short-term tracking refers to continuously tracking a single object within a
short sequence, where the target remains visible in every frame of the video. It assumes
no significant interruptions, occlusions, or camera changes.

Early research simplified the task, which is far away from
human visual tracking ability.

o Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer

vision and pattern recognition. 2013: 2411-2418.



I Task: Long-term Tracking (LTT)

Visual/Single Object Tracking (VOT/SOT) Human
A \ . . Visual
* Characteristics: Sequential decision, .
.. .t Tracking
category agnostic, instance-level prediction. )™ '\ I """ """~

. still hidden constraint (single-camera)

Characteristics of LTT (cancel short-term
constraint):

> Single-target

» Model-free

> gausal.r.e.lat,gonshlp

é Slngle camera \’ extra ta.sk
Sso - constraint

i e =

A LTT demo (=2mins, in single camera)

Definition: Long-term tracking expands single object tracking to longer time
sequences, allowing for temporary disappearance of the target (due to occlusion
or leaving the frame) and requiring re-detection when the target reappears. This

is in contrast to short-term tracking, which assumes the target is always present
in the frame.



I Task: Global Instance Tracking (GIT)

Visual/Single Object Tracking (VOT/SOT) Human
A \ . . Visual
* Characteristics: Sequential decision, .
.. .t Tracking
category agnostic, instance-level prediction. )™ '\ I """ """~

. Alignment

Characteristics of GIT (cancel all extra
constraints):

» Single-target

» Model-free

» Causal relationship

A GIT demo (unconstrainted time and space)
Definition: Global instance tracking extends the task of single object tracking by
removing the assumption of continuous motion, allowing the target to move freely
between different scenes and camera views. This task aims to model human
dynamic visual capabilities in more complex and realistic environments.

Global instance tracking is a more human-like task, which
allows trackers to align with human visual tracking ability.

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



Task Challenge

Discuss the various challenges that arise when
performing visual object tracking.



Challenges in VOT

* Challenges are widespread in real world

» Challenge Overview: VOT algorithms rely heavily on appearance and motion
information of the target. When these are disrupted, it leads to errors in predicting
the target’s location.

similar object

interference

partial occlusion absent motion blur fast motion



I Challenges in VOT

* Challenges in real world = Robustness issues

» SOT is a sequential decision process. The challenging factors in the environment will
cause errors that continue to accumulate over time, making it impossible to achieve
robust tracking.

e
L

1 2 3 4 5 time




Challenges in VOT

e Shot-Cut

» Appearance Information Disruption:

e Scene Transition:

O When there is a shot-cut, the scene may change entirely, with the
target reappearing in a different context, angle, or lighting.

O This sudden transition makes it difficult for the tracker to maintain the
target’s visual identity, as the previously known appearance may no
longer be applicable.

 Change in Target Appearance: The target may also look different after the
shot-cut due to changes in camera angle or distance, which disrupts the
consistency of visual features (like size, texture, or shape).



Challenges in VOT

e Shot-Cut

» Motion Information Disruption:

* The natural motion path of the target is interrupted during a shot-cut,
leading to a loss of temporal continuity.

* The tracker cannot rely on motion data from the previous shot, forcing it to
re-detect the target in the new frame.

Effect on Tracking:
The tracker must employ robust re-detection mechanisms to quickly locate the

target in the new shot. Additionally, context adaptation is necessary to handle
changes in scene and lighting conditions.




Challenges in VOT

* Occlusion and Target Disappearance
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» Appearance Information Disruption:

e Partial Occlusion: When the target is partially blocked by another object, the
algorithm loses crucial visual information like texture or color, making it
harder to maintain a precise appearance model.

* Full Occlusion: If the target is completely occluded, the tracker loses all
appearance data, forcing the algorithm to rely on motion models or prediction
until the target reappears.




Challenges in VOT

* Occlusion and Target Dlsappearance

» Motion Information Disruption:

e Occlusion Causes Loss of Motion Data: When the target is occluded, the
motion data becomes unavailable or unreliable, making it difficult to
predict the target’s future location.

* Target Disappearance: When the target leaves the field of view or remains
fully occluded for an extended period, the algorithm must handle re-
detection. If it fails, the tracker may lose the target permanently.

Effect on Tracking:

The tracker must adapt to occlusions by predicting the target’s likely path using
motion models. Once the target reappears, the tracker should quickly re-detect
it to avoid losing track.




I Challenges in VOT

* Lighting Changes

» Appearance Information Disruption:

* Changesin lighting (e.g., moving from a brightly lit area to a shaded region)
can drastically alter the target’s appearance. These changes may cause the
target’s color, texture, or overall brightness to differ significantly from its
original appearance.

» Motion Information Disruption:

e Poor lighting can obscure motion information, making it more challenging
for the algorithm to correctly interpret the speed and direction of the
target's movement.

Effect on Tracking:
Algorithms must incorporate adaptive lighting models to handle drastic changes.
Inconsistent lighting can confuse the tracker, leading to incorrect target predictions.




I Challenges in VOT

e Background Clutter

» Appearance Information Disruption:
* Visual Similarity to Background:

OO When the target's appearance (e.g., color, texture) is similar to
background elements, the tracker may struggle to differentiate the
target from its surroundings.

O This makes it difficult to maintain a clear distinction between the target
and background.

* Distraction by Non-Target Objects:

O In a cluttered background, there may be many objects that distract the
tracker, especially if these objects have similar visual features.

O This confusion can lead to the tracker locking onto the wrong object or
losing the target.



Challenges in VOT

e Background Clutter

» Motion Information Disruption:
* Interference from Moving Background Elements:

O In dynamic environments (e.g., busy streets or crowded places),
background objects in motion can confuse the tracker.

O The movement of background elements can be misinterpreted as the
movement of the target, leading to errors in motion prediction.

* Occlusions by Background Objects: In some cases, cluttered backgrounds
may temporarily occlude the target, making it harder for the tracker to
estimate the correct motion path.

Effect on Tracking:
Robust appearance models and motion prediction techniques are required to
distinguish the target from the background in cluttered environments.




Challenges in VOT

e Fast Motion

» Appearance Information Disruption:

* Motion Blur: When the target moves quickly, motion blur may occur,
causing the visual details (e.g., texture, edges) of the target to become
indistinct. This makes it difficult to maintain a consistent appearance
model of the target.

* Loss of Visual Features: In cases of extreme speed, the target may move
across frames too quickly, resulting in a loss of critical visual features such
as shape or color, which the tracker relies on for identification.



Challenges in VOT

e Fast Motion

» Motion Information Disruption:

* High-Speed Movement: Fast motion makes it difficult to predict the target's
movement accurately. Traditional motion models may fail to keep up with the
rapid changes in the target’s position, leading to poor tracking performance.

* Limited Search Window: Tracking algorithms often use a defined search
window around the predicted position. If the target moves too fast, it may
exit the search window, and the tracker may fail to locate it in the next frame.

Effect on Tracking:
Algorithms should have more advanced motion models that can handle sudden
and rapid changes in speed and direction.




I Challenges in VOT

* Special Scale & Special Ratio

AGC

AGC Video Japan

» Special Scale (Small or Large Targets):

* Small Targets: When tracking small objects, the algorithm may struggle to
capture enough visual detail, resulting in poor localization accuracy. Small-
scale objects have fewer distinguishable features, making them harder for
the tracker to differentiate from the background.

* Large Targets: Conversely, large targets may exceed the camera’s field of
view, resulting in partial occlusion. The tracker must handle incomplete
information, often leading to inaccuracies in bounding box adjustments.



Challenges in VOT

* Special Scale & Special Ratio
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» Special Ratio (Unusual Aspect Ratios):

» Tall or Wide Targets: Objects with extreme aspect ratios (e.g., very tall or wide)
challenge the tracker’s ability to accurately fit bounding boxes. Standard tracking

models often struggle with highly elongated objects, leading to misalignment of
the predicted bounding box with the actual target.

* Inconsistent Bounding Box Fitting: The algorithm’s reliance on intersection-over-
union (loU) measures means that special ratio targets often result in poor
performance when the bounding box cannot closely match the target's shape.

Effect on Tracking:

More flexible and adaptive bounding box models are required to improve
tracking accuracy for objects with special scale and ratio characteristics.




Challenges in VOT

e Scale Variation & Ratio Variation

> Scale Variation:

 Dynamic Size Changes: The target’s size in the video frame changes as the
relative distance between the target and the camera changes. This leads to
fluctuating scale, making it difficult for the tracker to maintain accurate
predictions.

* Foreground Feature Alterations: As the target becomes larger or smaller,
key visual features (such as edges, textures) may either become more
detailed or be reduced in clarity, complicating feature extraction for the
tracking algorithm.



I Challenges in VOT

e Scale Variation & Ratio Variation

> Ratio Variation:

e Shape Alterations: The target’s
aspect ratio may shift due to
rotations or perspective changes,
altering the shape of the object in
the frame. This requires the
tracker to adjust its bounding box
to fit the new shape, which can be
challenging if the ratio changes are

extreme.

« Bounding Box Fitting Issues: When Effect on Tracking:
the aspect ratio changes More adaptive models capable of
dramatically, the tracker may real-time adjustments to both scale
struggle to fit a precise bounding and ratio changes are essential to
box, especially in cases where the improve tracking robustness in
target becomes highly elongated dynamic scenes.

or compressed.



I Conclusion

» Comprehensive Understanding of the Evaluation Task:

e This section introduces visual object tracking (VOT) from two key
perspectives—task definitions and task challenges.

 The goal is to help researchers fully grasp the evaluation task and lay
the foundation for intelligent assessment.

> Constraints in Task Definitions:

e The inherent constraints in task definitions reflect the characteristics
of the tracking task.

* Changes in these constraints will shift the focus of the evaluation.
For example, a change in the duration of tracking (e.g., short-term vs.
long-term) could change the way algorithms are evaluated.



I Conclusion

» Task Challenges Represent Difficulties:

* The challenging factors in SOT represent the primary difficulties.

* A deep understanding of these factors is crucial for researchers to
accurately identify the performance bottlenecks of tracking
algorithms.

» Importance of Designing Evaluation Environments:

* Only by understanding the specific task challenges, such as
occlusion, fast motion, and scale variation, can researchers design
the right evaluation environments that test an algorithm's real
capabilities.

* Proper evaluation ensures that the algorithm's weaknesses are
uncovered, enabling improvement and refinement.



* Part 2. Experimental Environments

— General Datasets

CONTENTS — Specialized Datasets

— Competition Datasets
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General Datasets

General datasets are designed to test the performance of
algorithms under a variety of conditions.



General Datasets: Small-scale
*  OTB50 (2013) & OTB100 (2015)
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» OTB50 is one of the earliest benchmarks designed specifically for evaluating SOT
algorithms. OTB100 extended OTB50 by including more tracking sequences and
covering a broader set of tracking scenarios. OTB provides high-precision
annotations using horizontal bounding boxes and includes a variety of tracking
challenges such as occlusion, fast motion, and scale variation.

* Standardization: OTB helped standardize SOT evaluations by offering a set of
predefined benchmarks, enabling researchers to compare their algorithms on
a unified platform.

* Challenge Annotations: OTB is annotated with multiple challenge factors,
making it a comprehensive evaluation platform for early tracking algorithms.

o Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer

vision and pattern recognition. 2013: 2411-2418.



I General Datasets: Small-scale
e TColor-128 (2015)

Ball, 0.961 Cup, 0.959 Iennis, 0,934 Face, 1.926 Biker, 0.904 Table tennis, 0.846 Car, 0.832 Yo-yos, 0.812
FM.OCC.OPR.OV MB,IPR.OPR.FM OCC,MB.FM LR SV.OCC.IPR,BC... SVIPR.LR MB.BC.LR SV MB.FM,OV.SV

Motorbike. 0.799 Ball, 0.792 Human, 0.779 Plane, 0.740 Head. 0.722 Face. 0.721 Human, 0.697 Player, 0.692
IVSVMB.FM.... OCCMB.IPR.FM.... OCC.BC SV.OCC,FM,OPR  IV,OPR.OCCMB.... IV.OPR.SV.OCC... OCC.IPR,BC IV.OCC.DEEBC....

Head, 1,692 Boat, 0,685 Spiderman, (.660 Diver, 0,642 Hand, 0.614 Human, 0.597 Fish, 0.587 Human, 0.573
IVOPR.SV,OCC,... SV.OCCIPR,OPR OCCSVFM.IPR.... SV.DEEMB IV.SV IVSVDEEFM,....  OCCIPR.OPR.SV SV.0CC

Charger, {.564 Eagle. (0.553 Biker, 0.537 Panda, 0.537 7 Surfer, (1,532 Singer, (.528 Skier, 0.527 Player, 0.525
IVOCCMB,IPR,..  SVJIPROOPR,BC  SVDEFFMIPR... SV.OCC,IPRLR FML.IPR,OPR IVSV.DEFOPR... IVOPRSV.DEF.. SV.OCCDEFMB,..

» TColor-128 aims to evaluate the role of color features in SOT, particularly in
distinguishing targets from complex backgrounds.

* Focus on Color Features: Unlike datasets that include grayscale sequences,
TColor-128 exclusively includes color video sequences, enabling the
evaluation of algorithms that rely on color information to differentiate
targets.

v Liang P, Blasch E, Ling H. Encoding color information for visual tracking: Algorithms and benchmark[J]. IEEE

transactions on image processing, 2015, 24(12): 5630-5644.



I General Datasets: Small-scale
 Limitations
» While small-scale datasets, like the ones we’ve discussed, provide valuable

benchmarks, they also come with certain limitations that affect the performance
of deep learning models.

* Data Volume Constraints: Deep learning models require a large amount of
labeled data to achieve optimal performance. Many traditional SOT
datasets are limited in size, which constrains the ability of deep learning
models to generalize across diverse scenarios and environments.

* Poor Generalization: Models trained on smaller datasets may suffer from
poor generalization when tested in more complex real-world
environments, especially when faced with unseen target types or
challenging conditions like fast motion or occlusion.

* Lack of Diversity: Small-scale datasets often lack diversity in both target
types and tracking conditions, which limits the robustness of tracking
algorithms. This makes it harder for these models to handle new or
unexpected scenarios.

More large-scale tracking datasets with dynamic objects
» and varied tracking challenges are necessary to enhance
the performance of deep learning-based tracking models.



General Datasets: Large-scale
. ImageNet -VID (2015) & YouTube BB (2017)

» Two datasets from video object detection task:
* ImageNet-VID contains 5,400 video sequences with annotations for one or

more moving objects.
* YouTube-BB includes 380,000 YouTube video sequences with 5.4 million
frames annotated at a rate of 1 Hz.

» Despite its large size, these datasets focus on a small number of object
categories and includes static objects, which limits their utility for training
dynamic object tracking models.

» To overcome the limitations of small datasets and the static nature of larger
datasets like ImageNet-VID and YouTube-BB, there is a need for more diverse
and dynamic large-scale datasets designed for SOT task.

' Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International journal of computer vision, 2015, 115: 211-252.
' Real E, Shlens J, Mazzocchi S, et al. Youtube-boundingboxes: A large high-precision human-annotated data set for object detection in 44

video[C]//proceedings of the |IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5296-5305.



I General Datasets: Large-scale STT
* TrackingNet (2018)

» TrackingNet is one of the largest datasets for short-term tracking, designed to
support deep learning-based tracking models.

* Filtered for Quality: The dataset filters out static objects and noisy
segments from YouTube-BB, focusing on moving objects that are relevant
for tracking tasks.

 Combines Manual and Automated Annotations: Uses discriminative
correlation filter (DCF) to automate annotation, combined with manual
annotations for greater precision.

* Muller M, Bibi A, Giancola S, et al. Trackingnet: A large-scale dataset and benchmark for object tracking in the wild[C]//Proceedings of the European

conference on computer vision (ECCV). 2018: 300-317.

45



I General Datasets: Large-scale STT
e GOT-10k (2019)

» SOT Definition: Provides only the initial position of a moving object, and
continuously locates it in a video sequence.
» SOT Characteristics:

* Sequential decision: locating the target with the help of previous frames

""" Category agnostic: without any assumption about the target category (open-|
| setsetting) -

i
* Instance-level prediction: need to distinguish the target from others (including
objects in the same category)

There are a large number of unknown » Generalization
target categories in the real environment. Challenges

= L. Huang*, X. Zhao*, K. Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on

pattern analysis and machine intelligence, 2021, 43(5): 1562-1577. 46



General Datasets: Large-scale STT
e GOT-10k (2019)

» Motivation: Limitations of the existing experimental environment in terms of
generalization:

* Weak diversity, non-universal scenarios, poor generalization ability (training
and test categories completely overlap and have the same distribution)

LaSOT (CVPR’19)

e 70 object categories

* Training and testing categories
completely overlap and have
consistent distribution

TrackingNet (ECCV’19)
e 22 object categories
VOt ek ki el B |  Training and testing categories
LS completely overlap and have

consistent distribution

2 L. Huang*, X. Zhao*, K. Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on

pattern analysis and machine intelligence, 2021, 43(5): 1562-1577.



I General Datasets: Large-scale STT
e GOT-10k (2019)

» A large-scale benchmark that covers a wide range of natural and artificial object
categories and motion forms and follows the open set evaluation protocol.

v L

* N .
A

2 L. Huang*, X. Zhao*, K. Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on

pattern analysis and machine intelligence, 2021, 43(5): 1562-1577. 48




I General Datasets: Large-scale STT
e GOT-10k (2019)

» lLarge-scale, unified training, validation, and test sets.

| B B N N _§ |
1 Total Train Test Properties
Dataset | Min/Max/Avg. Bramia
Classesy Videos | Boxes | Classes| Videos | Boxes | Classes| Videos | Boxes Exp. Setting Duration R‘a to
(seconds)

OTB2015 [12] 22 100 59 k | - - - 22 100 59 k casual 24/129/20 30 fps

VOT2019 [2] 30 60 199k I - - 30 60 19.9 k casual 1.4/50/11 30 fps

ALOV++ [21] 59 314 16k - - - 59 314 16 k casual 0.63/199/16 30 fps

NUS_PRO [17] 12 365 135kd - - - 12 365 135 k casual 49/168/12 30 fps

TColor128 [16] 27 129 | 55k | ) 27 129 | 55k casual 24/129/14 30 fps

NS [14] 33 100 sk 1 - - - 33 100 38k casual 0.7/86/16 240 fps

UAV123 [15] 9 123 113k | - - - 9 123 113 k casual 3.6/103/31 30 fps

UAV20L [15] 5 20 9k 1 - - - 5 20 59 k casual 57/184/75 30 fps

OxUvA [13] 22 366 155k | - - - 22 366 155k | open + constrained 30/1248/142 30 fps

LaSOT [20] 70 14k 3i3M | 70 1.1k 28M 70 280 685 k fully overlapped 33/380/84 30 fps

TrackingNet [19] 21 31 k 14 M 21 30 k 14 M 21 511 226 k fully overlapped /=116 30 fps
MOT15 [29] 1 22 101 k 1 11 43k 1 11 58 k - 3/225/45 2.5~30 fps
MOT16/17 [28] 5 14 293 k 5 7 200 k 5 7 93 k - 15/85/33 14~.30 fps

KITTI [30] 4 59 k + 4 29 - - - 10 fps

ILSVRC-VID [23] 27M 30 - - - - 0.2/183/11 5

6 5 3 . . : -

F—GOT10k || 563 N 10k | 15M | 480 | 933k | 14M |

84

l

420

[ 56k

[

one-shot

|

0.4/148/15

| 10fps 1]

L ] e

» L. Huang*, X. Zhao*, K. Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on

r----------------------------------------

10k videos, 1.5M manual annotations

pattern analysis and machine intelligence, 2021, 43(5): 1562-1577.
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I General Datasets: Large-scale STT
e GOT-10k (2019)

» 563 types of objects, fully covering common natural and man-made moving
objects in WordNet.

B uAv2oL (5)

B vavi23 (9)

B Nus_PRO(12) ..

B o1B(S) GOT-10k Statistics of Subtrees

B TrackingNet (21) . : .

B OTB2015(22) Number of Object animal | vehicle | person WS;‘;;zfnon oﬁ{,‘:t

B oxuvA(22)

B vouruweBB (23) Classes Across Datasets Targets| 38k | 24k | 2.5k 0.5k 1.0k

= Toome-tas D) BBoxes| 360k | 380k | 487k 70k 214k
VOT2019 (30

| lmachct-(Vll; (30) Sub-classes| 382 154 1 11 15

[ RSN Avg. Duration| 9.5s | 159s | 199s 14.1s 208 s

I ALOV-++(59)
I LasoT (70)
. GOT-10k (563)

The number of object categories (563) is nearly 10 times that of
other tracking datasets (in 2019)

» L. Huang*, X. Zhao*, K. Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on

50

pattern analysis and machine intelligence, 2021, 43(5): 1562-1577.



General Datasets: Large-scale STT
e GOT-10k (2019)

» 87 types of motion modes, covering a wide range of different forms of sports
trajectories.

Object category labels

animal

climbing

vehicle

taking off i Iandiniz i idi running

person

mwllng u:uha diving

(i M .
i .L =

blowing falling

- B

riding rotation speech rotation fighting speech Funning

passive motion
object

Motion category labels

Each video sequence includes two labels: object category and motion category.

= L. Huang*, X. Zhao*, K. Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on 51

pattern analysis and machine intelligence, 2021, 43(5): 1562-1577.



General Datasets: Large-scale STT
e GOT-10k (2019)

» Open set evaluation specification (training and test categories do not overlap at
all) for generalization ability evaluation

10000 9335 W train
B validation

W test

1000
There is no overlap between

training and testing categories,
and the algorithm is required to
accurately track moving objects of
unknown categories.

100

10

number of videos object classes motion classes

» L. Huang*, X. Zhao*, K. Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on 52

pattern analysis and machine intelligence, 2021, 43(5): 1562-1577.



General Datasets: Large-scale STT
e GOT-10k (2019)

» Complete evaluation platform, real-time rankings, open-source toolkits
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Leaderboard

Up-2o-cote gerwric otpect tachag performanse of basstey srd suoretnd madts on GOT- 100 AN ertries aw temhed beaadc o ther Aserage Overss
(ACH woaes.

GOT-10k: Generic Object Tracking Benchmark

A arge, Rgh-tivecsily, che-stot databioss for gerenc objact acking in the wid

Up-to-Date Leaderboard

Kay Festures

T - T " waomwe Lrguogs  Oms A
Large-Scale Geverc Classes
v I aem’'  axa'  owm'  um (CT T o
aa® e owm?
am' o’  em e TTTM Niaaned. 133000 Femm A 4500
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Preview of Sampés Videos

http://qgot-10k.aitestunion.com/

2 L. Huang*, X. Zhao*, K. Huang. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on 53

pattern analysis and machine intelligence, 2021, 43(5): 1562-1577.



General Datasets: Large-scale LTT

OxUvVA (2018) -
SR
s

» OxUVA is designed specifically for long-term object tracking, testing the ability of
algorithms to handle target disappearance and reappearance across extended
video sequences.

* Challenging Long-term Evaluations: This dataset shifts the focus from tracking
in consistent, short-term scenarios to more dynamic and unpredictable long-
term tracking conditions.

* Benchmark for Robustness: OxUVA tests the robustness of tracking
algorithms by introducing the challenge of target disappearance, making it a
critical dataset for evaluating next-generation tracking models.

~* Valmadre J, Bertinetto L, Henriques J F, et al. Long-term tracking in the wild: A benchmark[C]//Proceedings of the European conference

on computer vision (ECCV). 2018: 670-685.



I General Datasets: Large-scale LTT
. LaSOT (2019) & LaSOT-ext (2021)

bus-2: “blue bus running on the street”

» LaSOT is designed to evaluate long-term single object tracking algorithms, with
extended sequences to test tracking robustness over long durations.

* Standard for Long-term Tracking: LaSOT is one of the largest and most
comprehensive datasets for long-term tracking, offering diverse sequences
and challenges that test algorithms beyond short-term scenarios.

* Semantic Annotations: The dataset also provides semantic annotations for
each sequence, making it useful for multimodal research and advanced
tracking techniques that require semantic understanding.

» Fan H, Lin L, Yang F, et al. Lasot: A high-quality benchmark for large-scale single object tracking[C]//Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2019: 5374-5383.



I General Datasets: Large-scale GIT
 VideoCube (2023)

» Motivation: Limitations of the existing experimental environment in terms of
robustness:

* The continuous motion assumption limits the experimental environment to
simple scenes with slow motion and a single shot.

| IS

LaSOT: Continuous motion assumption, no shot cuts and scene transitions = Simple environment

=+ S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



I General Datasets: Large-scale GIT
 VideoCube (2023)

> Scientific collection principles:

* Based on the narrative theory of film, the 6D principle is proposed to
simulate real scenes.

* For the first time, scene categories and spatio-temporal factors are included

In the CO”eCt|0n dlmenS|on- Space-timerelationship
[ 1
= [ scene: City Scene: Village !
Scene Temporal | Space: Alternate |
Category Continuity i . . - " - N - |
. la r 8 & c T LA, e & [ g - h !
AN - R ' o -Zug Ryl AT
o . | 8 1= . —| ~ |
/ Relationship \ i Timeline: Alternate i
/' . - . iTime: Morning Time: Afternoon i
pace ime \ ‘
szft a'l F i I m Total
Continuity N a rrative Frame
\ Action Character )
. /
\ '\ Cause-effect ] .
. Relationship /
N . |
Motiol Object i Instance:
Mod. Class | Bicycle
~ _ _ - D,
L 1 Motion: Move
Cause-ei‘fectY Relationship
6D Principle Collection Dimension

Film narrative is a chain of events in cause-effect relationship
occurring in space and time.
(Bordwell & Thompson 2004, Film art : an introduction )

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



General Datasets: Large-scale GIT
 VideoCube (2023)

» Scientific collection principles:

* Compared with existing datasets, VideoCube has richer content.

‘hn- : ~1in
%3y
I'J

Hﬁﬂ&n‘ Tmcine At

LaSOT Object Classes

LR ™
- xaIR=NN
- S| R
.Y BT
O P B

GOT-10k: Object categories VideoCube: Target category + motion mode + scene
category + spatiotemporal continuity

Tiemaline: Can

+ motion modes

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



I General Datasets: Large-scale GIT

 VideoCube (2023)
» High-precision labeling:

» Standardized labeling criteria + strict review process = Improve data quality

A  —— Specific Annotation
w—|nitial Annotation

Specific rules in annotations

| Annotation > Check T Y Verification

Collectors — — — — — 1 poVerifiers™ 7 [WAuthers™ ]
L R R\ : Manual & automatic
I ' | ' | ! .
| i I | annotations
|  Data Self | e | Data |
] Collection Check |_Y_# Verification I_Y_i[ Acceptance |
| I L :
——————————— 4 [ I | | |
Y + I
> N N
| | |
| |
’ — Self ! o Data -y VideoCube Data CheCkOUt
|
|

Y_T Acceptance | process
|

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



I General Datasets: Large-scale GIT
 VideoCube (2023)

» Large-scale dataset:

* The duration of a single video segment is much longer than existing tracking
datasets and includes camera switching and scene transitions.

[t AR L AR, . 5 S KD MR W, ¥ , N S S
11 0]
: & | | U UL
 TREE SIEECHERFEIEREEE
|
| ; —_—
| L B
I #4436 #5946 EIOTT. #8335 K8
R L T, N, S R S Sl R~ i, I e R L B k. (N SR
(a) VideoCube
Long video sequences + rich shot switching and scene transitions

B ™ SRR RS 1

| g [

Tok

| a

: "8d30HERIRESREE

| Frame Number

l e - —

' _W % ¥

: g d‘ .

| &5 ) i \ \

|- =403 #860 mssé& | I

i s i iy At ol e e . s s il @i L L

(b) LaSOT (c) GOT-10k (d) OTB100

Short video sequence + single shot + fixed scene

=+ S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



General Datasets: Large-scale GIT
 VideoCube (2023)

» Large-scale dataset:

* One of the largest SOT dataset currently, with an overall size 2~200 times that
of existing datasets

Be : Mean Median Max Total I Total Label At Object  Motion Scene
Bnchimak Year Videos pome Frame Frame Framed Frame | Duration Density e Classes Modes Categories
| 1 (Absent)
OTB2013 [34] 2013 51 71 578 392 3872 | 29K i 16.4m 30Hz 11 (X ) 10 n/a n/a
OTB2015 [1] 2015 100 71 590 393 3872 1 59K | 32.8m 30Hz 11(X) 16 n/a n/a
TC-128 [41] 2015 129 71 429 365 3872 I 55K | 30.7m 30Hz 11(X) 27 n/a n/a
NUS-PRO [42] 2015 365 146 371 300 5040 1 135K | 75.2m 30Hz n/a 8 n/a n/a
UAV123 [43] 2016 123 109 915 882 3085 1 113K | 75.2m 30Hz 12(X) 9 n/a n/a
VOT-2017 [4] 2017 60 41 356 293 1500 | 21K | 11.9m 30Hz n/a 24 n/a n/a
Nfs [44] 2017 100 169 3830 2448 20665 1 383K | 26.6m 240Hz 9(X) 17 n/a n/a
TrackingNet [2] | 2018 30643 - 498 - - 1 1aM | 141h 1Hz(30Hz)* 15(X) 27 n/a n/a
GOT-10k [5] 2019 10000 29 149 101 1418 | 145M j 40h 10Hz" 6(v') 563° 87 n/a
UAV20L [43] 2016 20 1717 2934 2626 5527 1 59K | 32.6m 30Hz 1 2()( ) 5 n/a n/a
OxUvA [46] 2018 366 900 4320 2628 37740 1 1.55M | 14.4h 1Hz? (v)*© 22 n/a n/a
S AT Dl 220 e 20 e e 20 e 2 e 2 e e e o B T ] e 2 e e s BT e e e (1) e e e e s e e el
VideoCube 2020 500 4008 14920 14162 29834 1 7.46M J 69.1h  10Hz(30Hz)! 12(v) 9(89)9 61 8(55)" 3

Comparison of VideoCube and other representative SOT
benchmarks in various statistical dimensions

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



General Datasets: Large-scale GIT
 VideoCube (2023)

» Complete evaluation platform, real-time rankings, open-source toolkit.

S v G- - '

Instructions - VideoCube Benchmark Leaderboard

lﬂlﬂﬂﬁﬂ“ﬂﬁ!ﬂl!

— = r —_—
VIDEOCUBI : _ g_laau«.-—h--
o P
@7 RSN

http://videocube.aitestunion.com/

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



Specialized Datasets

Specialized datasets are designed with specific tracking
challenges in mind, focusing on unique scenarios or target

types.



Specialized Datasets: Specific Object

Specialized Evaluation Environments:

Specialized environments are designed for specific tasks or special target types and
are characterized by their focus on “small but precise” datasets. These
environments aim to measure tracking performance under specific evaluation
requirements and unique scenarios.

- NUS-PRO (2016)

baat ON frame # |

airplane 006 frame #1

» NUS-PRO was developed to test tracking algorithms with a focus on two major
target types: people and rigid objects, providing challenging sequences for
tracking under occlusion conditions.

* Improved Understanding of Occlusion: NUS-PRO is particularly useful for
evaluating the performance of algorithms in handling occlusion, a common
challenge in real-world tracking scenarios.

* Benchmark for Rigid and Non-rigid Tracking: By including both people (non-
rigid) and rigid objects, the dataset provides a versatile platform for testing
the adaptability of tracking algorithms across different target types.

ot LiA, Lin M, Wu Y, et al. Nus-pro: A new visual tracking challenge[J]. IEEE transactions on pattern analysis and machine intelligence,

2015, 38(2): 335-349.



Specialized Datasets: Specific Object

. TOTB (2021)

» TOTB is designed specifically for tracking transparent objects, which pose

significant challenges due to their weak appearance information and sensitivity to
background interference.

e Challenging Scenarios: 67.5% of the video sequences in TOTB contain
background clutter, further complicating the tracking task and emphasizing
the robustness required by algorithms to handle these scenarios.

e Evaluation of Algorithms in Complex Scenarios: TOTB challenges current
tracking algorithms to handle transparency and complex backgrounds,
providing a benchmark to test robustness in more difficult conditions.

4% Fan H, Miththanthaya H A, Rajan S R, et al. Transparent object tracking benchmark[C]//Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2021: 10734-10743.



I Specialized Datasets: Specific Scenario
« UAV123 & UAV20L (2016)

- " el —
R b ., 4 [OST
i M AN 5

» UAV123 was created to evaluate the performance of object tracking algorithms in
challenging aerial scenarios captured from UAVs. UAV20L is a subset of the
UAV123 dataset, but focuses on long-duration video sequences to evaluate how
well tracking algorithms can handle extended tracking sessions without losing the
target.

* Aerial Perspective: The dataset emphasizes tracking from an aerial
perspective, which introduces challenges like object size reduction and
frequent occlusions due to camera movement.

* Emphasis on Real-time Processing: The challenging sequences require fast
and efficient algorithms, pushing the boundaries of real-time object tracking.

= Mueller M, Smith N, Ghanem B. A benchmark and simulator for UAV tracking[C]//Computer Vision—ECCV 2016: 14th European 66

Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part | 14. Springer International Publishing, 2016: 445-461.



I Specialized Datasets: Specific Scenario
* BioDrone (2024)

» Motivation: Limitations of the existing experimental environment in terms of
robustness:
* Mainly focus on general scenarios, ignoring the attention of highly
challenging special scenarios
* Mainly based on fixed lenses or handheld lenses to record moving targets,
resulting in a short distance between the lens and the target, lack of small
targets and fast motion challenges

‘ jump@g ' climbing swamming uudm;. mmmg gbdmg active flight

fanding rotation

surﬁng skiing skulcbmrumg ) uwlmg xubu diving a;.-cslmn spoet judo

Htlhlﬂuﬂ

spinning pasting ey fNoating camera mots  blowng

P Ml | B

rotation roation fighting running

v X. Zhao, S. Hu#, Y. Wang, et al., “Biodrone: A bionic drone-based single object tracking benchmark for robust vision,” International

Journal of Computer Vision (IJCV), 2024.
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Specialized Datasets: Specific Scenario
* BioDrone (2024)

» Robust Vision Research Dataset: |
e The first SOT dataset from the
perspective of a bionic flapping-wing |
drone. Faping
* The aerodynamic structure of a bionic -
flapping-wing drone is different from
that of a traditional fixed-wing or or
rotary-wing drone, and there is severe

jitter between the shots.

Tail wing
Attitude servo

Figure transmission

Flight Antenna

Battery  Flappin
pping Camera control

servo

* X. Zhao, S. Hu#, Y. Wang, et al., “Biodrone: A bionic drone-based single object tracking benchmark for robust vision,” International
Journal of Computer Vision (IJCV), 2024.
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I Specialized Datasets: Specific Scenario

 BioDrone (2024) T8 L7 —a“
> Robust Vision Research Dataset: - 1 - -
* Includes different flight oy . =--”
altitudes, flight angles and
flight environments, m.. .-'
highlighting the challenges of m--“-
fast movement and small : - '

. K. . N

targets.
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' X. Zhao, S. Hu#, Y. Wang, et al., “Biodrone: A bionic drone-based single object tracking benchmark for robust vision,” International

Journal of Computer Vision (IJCV), 2024. 69



Specialized Datasets: Specific Scenario
* BioDrone (2024)

» Complete evaluation platform, real-time rankings, open-source toolkit

Leaderboard (OPE Mechanism with Full Version)

BioDrone .'

A Bionic Dfone-baed Singin Object Tracking Benchmark for Robust Visan

BioDrone Python Toolkit

http://biodrone.aitestunion.com/

~+ X. Zhao, S. Hu#, Y. Wang, et al., “Biodrone: A bionic drone-based single object tracking benchmark for robust vision,” International

Journal of Computer Vision (1JCV), 2024. 70



Competition Datasets

Competition datasets provide standardized benchmarks
for comparing the performance of tracking algorithms
under controlled and real-world conditions.



I Competition Datasets
 VOT-ST -> VOT-LT -> VOT-RGBT / VOT-RGBD

VOT (Visual Object Tracking)

5 ' Challenge:
Q The VOT Challenge is an annual event

established in 2013. It is one of the
most influential competitions in the
field of visual object tracking, providing
standardized evaluation datasets and
protocols.

To commemorate 10 years of VOT challenges,
the VOT Innitiative has set up a short online
exhibition.

» VOT-ST competition: employs rotated bounding boxes or segmentation,

supporting research in joint target segmentation and tracking tasks.

¥ https://www.votchallenge.net/



I Competition Datasets
 VOT-ST -> VOT-LT -> VOT-RGBT / VOT-RGBD

» VOT-LT competition: allowing target disappearance as the distinguishing criterion
between short-term and long-term tracking, and collected 50 long video

sequences as competition data.

target tracking. Thermal imaging information is less affected by lighting, so it can
still provide environmental information under special lighting conditions.

» VOT-D and VOT-RGBD competitions: focus on depth information, which can
effectively separate foreground and background while providing additional support

for target occlusion issues.

4 https://www.votchallenge.net/



I Conclusion

> General Evaluation Environments:

* General evaluation environments feature an early start in research,
numerous representative works, and wide data coverage.

 These environments aim to provide a comprehensive experimental
platform for evaluating the overall capabilities of tracking algorithms
in general scenarios.

» Specialized Evaluation Environments:

e Specialized environments are designed for specific tasks or special
target types and are characterized by their focus on “small but
precise” datasets.

* These environments aim to measure tracking performance under
specific evaluation requirements and unique scenarios.



I Conclusion

» Competition-Based Evaluation Environments:

 Competition environments are released as part of tracking
competitions.

 These environments usually feature highly challenging video
sequences designed to rapidly expose algorithm weaknesses.

 The goalis to rank participating algorithms based on multiple
performance dimensions.

The goal is to help researchers understand the
characteristics and focus of each environment, enabling
them to build evaluation settings that are better suited for
the specific evaluation objectives.
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Machines

We will explore different types of machine-based tracking
systems, including traditional algorithms and more
advanced deep learning models.



Machines: Traditional Trackers

Traditional trackers :
Traditional trackers usually includes the following steps: motion modeling, feature
representation, appearance modeling, and algorithm updating.

Algorithm
Updating

Feature
Represent
ation

Motion
Modeling

» Motion modeling

* Purpose: Predict the target trajectory in subsequent frames by estimating
the position state of the target.

* Representative Methods: Particle filtering, Sliding window



Machines: Traditional Trackers

Algorithm
Updating

Feature

Motion
Represent

Modeling

> Feature Representation
* Global Features: Early methods extracted features from the entire target.

O Grayscale features, gradient histogram features, and color histogram
features R

R

-

grayscale features gradient histogram features
* Local Features: To handle challenges like occlusion and deformation, local
feature extraction methods were applied.

O Segment the target into independent regions and fuse information
from each part



Machines: Traditional Trackers

Feature
Represent
ation

Motion
Modeling

» Appearance Modeling
 Generative Methods:

O First, maintain a target template set using methods like incremental
subspace or block sparse representation.

0 Then, measure similarity based on the distance between the
candidate sample and the target template set.

e Discriminative Methods:

O Treat tracking as a classification problem, classifying between the
target and the background.



Machines: Traditional Trackers

Feature
Represent
ation

Motion
Modeling

» Algorithm Updating
* Purpose:

O The initial static template struggles to continuously guide tracking for
dynamically changing targets.

0 The update strategy ensures that the algorithm adapts to changes in
the target's appearance.

* Representative Methods:
O Incremental learning-based updates

0 Online refactoring of the appearance model



Machines: Correlation Filter Based Trackers

Feature Correlation
Extraction Filtering

Feature
Extraction

Search Region Heatmap

» Overall Process: Feature extraction, correlation filtering, output prediction
» Advantages:

* Correlation filter theory expands training samples through cyclic shifts,
effectively solving the problem of insufficient data in early methods.

* Fast Fourier Transform reduces computational load and improves tracking
efficiency.

> Representative Methods: KCF, ECO, UPDT



Machines: Correlation Filter Based Trackers

> Kernel Correlation Filter (KCF) Algorithm Filter T’O ‘Lc_k"’;g Response
jec

* A typical discriminative object tracking method.

* Determines the target position by training a filter, with high
computational efficiency and strong tracking performance.

* Core Design:

[0 Target Initialization (t frame): Select the target and sample around it
to train the classifier (filter).

[0 Target Position Update (t+1 frame): Sample near the target in the
t+1 frame, use the classifier to perform correlation operations, and
calculate the response at the sampling points.

0 Determine Target Position: Identify the sampling point with the
strongest response that meets the threshold, and treat it as the
target position in the t+1 frame.

% Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE transactions on pattern analysis and machine
intelligence, 2014, 37(3): 583-596..

83
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Machines: Correla

Our Representation

Baseline

» Efficient Convolutional Operators (ECO) Algorithm

* Aims to address the computational complexity and overfitting issues in
Discriminative Correlation Filter (DCF) methods.

* Core Design:

O Factorized Convolution Operators: Reduced model parameters,
lowering complexity and avoiding overfitting.

O Generative Sample Space Model: A compact sample generation
model that enhances the diversity of training samples.

O Conservative Model Update Strategy: By reducing the frequency

of model updates, it improves tracking speed and prevents model
drift.

' Danelljan M, Bhat G, Shahbaz Khan F, et al. Eco: Efficient convolution operators for tracking[C]//Proceedings of the IEEE conference on computer vision and 84

pattern recognition. 2017: 6638-6646.



Machines: Correlation Filter Based Trackers

(a) Image sample (b) Deep score (c) Shallow score (d) Fused score

» Unveiling the Power of Deep Tracking (UPDT) Algorithm
* Solves the issue in ECO where deep features were not fully utilized.
* Core Design:

[0 Separation of Deep and Shallow Features: Deep features model high-
level semantic information, while shallow features model texture and
color information.

[0 Adaptive Response Map Fusion: Based on detection quality
assessment, adaptively fuses the response maps of deep and shallow
features with weighted fusion.

% Bhat G, Johnander J, Danelljan M, et al. Unveiling the Power of Deep Tracking [J]. arXiv preprint arXiv:1804.06833, 2018.




Machines: Siamese Network
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» SiamFC Algorithm

* Network Architecture: SiamFC uses two identical fully convolutional networks
(FCNs) to extract features from the target template in the first frame and the
search region in the subsequent frames. The network computes the cross-
correlation between the two feature maps to predict the location of the object in
the search region.

* Core Design: SiamFC assumes that the object remains within a specific search
region and relies on the correlation between frames to track the object without
needing to update the model online.

* Impact: SiamFC laid the groundwork for further development in deep learning-
based object tracking.

=+ Bertinetto, Luca, et al. "Fully-convolutional siamese networks for object tracking." Computer Vision—ECCV 2016 Workshops
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Siamese Network Region Proposal Network

SiamRPN adopts the Region Proposal Network (RPN), enabling the tracker to
predict position and shape.

» SiamRPN Algorithm

* Network Architecture: SiamRPN consists of two fully convolutional Siamese
networks to extract features from the target template and the search region.
These features are then passed through the RPN, which generates region
proposals and refines the bounding box for the tracked object.

* Core Design: SiamRPN treats object tracking as a detection problem by using RPN
to predict the object’s location and bounding box in each frame. This allows for
more accurate localization and bounding box regression, improving the tracking
performance, especially for objects undergoing scale and shape changes.

«* Li, Bo, et al. "High performance visual tracking with siamese region proposal network." CVPR. 2018.
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SiamRPN++ adjusted the sampling strategy, making it possible to use deep networks like ResNet-50.
» SiamRPN++ Algorithm

* Network Architecture: SiamRPN++ uses a ResNet backbone to extract more
robust and discriminative features. This improves the network's ability to handle
complex scenarios, including large appearance variations, occlusion, and
background clutter, while maintaining real-time performance.

e Core Design: By upgrading the backbone from shallow convolutional networks to
deeper ones (such as ResNet-50), SiamRPN++ can capture more detailed and
hierarchical feature representations, which improves tracking performance in
challenging conditions.

2+ Li, Bo, et al. "Siamrpn++: Evolution of siamese visual tracking with very deep networks." CVPR. 2019.




I Machines: Siamese Network
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TransT incorporates attention to replace the conventional correlation operation,
efficiently merging the features of the template and search region.

» TransT Algorithm

* Network Architecture: Unlike simple linear correlation in traditional trackers,
TransT applies an attention mechanism in the feature fusion module to extract
more comprehensive and context-aware feature representations. The self-
attention mechanism in Transformers allows the model to capture dependencies
between the target and the background more effectively.

e Core Design: The central idea of TransT is to leverage Transformer networks to
model long-range dependencies and capture global contextual information in
the feature space, leading to more robust tracking performance, particularly in
challenging scenarios like occlusions, scale variation, and background clutter.

' Chen, Xin, et al. "Transformer tracking." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
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SwinTrack adopts the Swin Transformer as its backbone, while also utilizing an attention-
based feature fusion module. This represents a major leap for Transformer-based trackers.

» SwinTrack Algorithm

* Network Architecture: SwinTrack is a state-of-the-art object tracking algorithm
that leverages the Swin Transformer architecture for feature extraction and
modeling long-range dependencies. The Swin Transformer, originally proposed
for visual recognition tasks, is adapted in SwinTrack to handle the unique
challenges of object tracking.

e Core Design: SwinTrack utilizes shifted window-based attention to efficiently
capture both local and global contextual information, making it particularly
effective in complex tracking scenarios involving occlusions, background clutter,
and varying object scales.

2+ Lin, Liting, et al. "Swintrack: A simple and strong baseline for transformer tracking." NeurlPS 2022.




Machines: One-Stream Trackers
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» The original Siamese neural network (SiamFC) used a CNN backbone and a cross-
correlation layer for feature fusion. This two-stream approach processes the
template and search region separately, then merges the results for tracking.

» As the field of computer vision and hardware have progressed, self-attention
mechanisms have been introduced into Siamese networks. This has led to the
development of Transformer-based one-stream architectures, which process

both the template and search region in a unified manner, ultimately replacing the
Siamese structure.




Machines: One-Stream Trackers
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» OSTrack Algorithm

* OSTrack proposes a unified one-stream architecture where both feature
learning and relation modeling are performed within a single network. This
contrasts with traditional tracking models that may separate feature
extraction from the relation modeling process, thus reducing
computational overhead and improving efficiency.

* Core Design: The framework integrates feature learning and the
relationship between the target and the search region in one stream,
ensuring that the network can simultaneously learn object representations
and how they relate to the background or other objects in the scene.

=+ Ye, Botao, et al. "Joint feature learning and relation modeling for tracking: A one-stream framework." ECCV, 2022.
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» Background: Recently, foundational vision/multimodal models have demonstrated
exceptional capabilities in perceiving and understanding image/modality content.

* How can these models be applied to SOT tasks? = Design a pipeline
» Exploratory Works

 TAM (Track Anything Model)

 SAM-Track (Segment and Track Anything)

* TrackGPT (Tracking with Human-Intent Reasoning)



Machlnes LVIM- based Trackers
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» TAM (Track Anything Model): Combines SAM, DeAOT, and Grounding-DINO to
create an efficient multi-object video segmentation model.

» Pipeline
e Users interactively initialize by clicking on the object to define the target.

« XMem is used to give mask predictions for the object in the next frame based
on temporal and spatial correspondence.

« SAM is utilized to provide a more precise mask description.

e Users can pause and correct the tracking immediately upon noticing a failure.

«~*Yang J, Gao M, Li Z, et al. Track anything: Segment anything meets videos[J]. arXiv preprint arXiv:2304.11968, 2023.
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» SAM-Track (Segment and Track Anything): Applies SAM to the XMem video
segmentation model, achieving an interactive video object segmentation model.

» Pipeline
* Multimodal Interaction: Users can select the target through clicking,
drawing, or text input.

e Automatic Tracking: SAM-Track, combined with DeAQOT, automatically
tracks multiple objects in the video.

* Enhanced Semantic Understanding: With Grounding-DINO, SAM-Track
supports object selection based on natural language.

z*Cheng Y, LiL, Xu Y, et al. Segment and track anything[J]. arXiv preprint arXiv:2305.06558, 2023.




I Machines: LVM-based Trackers
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» TrackGPT: Proposes a new object tracking task—Instruction Tracking. Tracker
autonomously reasons and tracks objects in video based on implicit instructions,
rather than relying on explicit bounding boxes or language descriptions.

» Core Design:

e Self-Reasoning: Utilizes LVLM to understand implicit instructions and
reason about the target object.

* Cross-Frame Propagation Mechanism: Adapt to appearance changes.

* Rethinking Mechanism: When the tracking results do not align with the

instructions, TrackGPT automatically adjusts and updates the tracking
process.

~+Zhu J, Cheng Z Q, He J Y, et al. Tracking with human-intent reasoning[J]. arXiv preprint arXiv:2312.17448, 2023.




Machine-to-Machine
Evaluation

Algorithms are evaluated against benchmarks by
comparing their outputs with other algorithms.



Machine-to-Machine Evaluation
e Evaluation Mechanism: OPE

#0 #1 #130 #131 #132 #281 #282

Fail

Init

Traditional OPE Mechanism

» OPE (One-Pass Evaluation): One-Pass Evaluation (OPE) is a fundamental
evaluation method in SOT. It evaluates a tracker by initializing it in the first frame
and letting it run through the entire sequence without reinitialization.

* Objective: Measure the accuracy and robustness of tracking algorithms by
allowing the tracker to operate without any manual reinitialization.

* Limitations:

O Influence of initialization: A poor initialization may cause significant
variations in results, as different starting points could lead to major
differences in tracking performance. = TRE, SRE

O Tracking failure: When tracking fails, the tracker continues to lose the
target for the remainder of the sequence, providing no meaningful
insights after failure.= Restart Mechanism

o Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer

vision and pattern recognition. 2013: 2411-2418.



Machine-to-Machine Evaluation

 Evaluation Mechanism: TRE
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» Temporal Robustness Evaluation (TRE) tests the robustness of tracking algorithms
by reinitializing the tracker at different starting points throughout the sequence.
This is done to simulate varying temporal conditions.

TRE l___‘

* Objective: Evaluate how well a tracker can handle different temporal
conditions by restarting tracking from multiple frames.

* TRE Key Metrics:

0 Average Performance: The tracker is evaluated on the entire sequence by
measuring precision and success from different starting points.

O Consistency: Measures how consistently the tracker performs when
initialized at different times within the same sequence.

e Applications: TRE is valuable for testing how well tracking algorithms can
recover from failures or adapt to changes in target appearance over time.
o Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer

vision and pattern recognition. 2013: 2411-2418.



Machine-to-Machine Evaluation

e Evaluation Mechanism: SRE
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» Spatial Robustness Evaluation (SRE) involves perturbing the initial position or scale
of the target in the first frame. This tests how well the tracker can handle variations
in the initial spatial position or size.

* Objective: Evaluate a tracker's robustness to spatial changes by starting
tracking with slight errors in the initial bounding box.

* SRE Key Metrics:

O Tracking Accuracy: Measures how well the tracker adapts to slight errors
in the starting bounding box.

[0 Resilience to Perturbations: Evaluates the tracker’s ability to handle errors
in position or scale during initialization.

* Applications: SRE is particularly useful for testing robustness to inaccuracies in

manual annotations or initial target detection errors.
o Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer

vision and pattern recognition. 2013: 2411-2418. 100



Machine-to-Machine Evaluation

 Evaluation Mechanism: Restart for OTB Benchmark

#0 #1 #130 #131 #132 #281 #282
Init Init Fail Init_
Fail Restart+1 Restart+1
OPER Mechanism in OTB

» Restart Mechanism is designed to reinitialize a tracker when tracking failure is
detected, offering a solution to prolonged tracking failures. Originally implemented
in OTB, this mechanism has been further developed and adapted to improve
evaluation consistency across different tracking scenarios.

* OPER (OPE with Restart): OPER reinitializes the tracking algorithm upon failure
and resets the target in the next frame. This ensures that tracking performance
is not unfairly penalized by cumulative errors, as the evaluation will continue
with re-initialized target information.

* SRER (SRE with Restart): SRER similarly handles spatial challenges by
reinitializing the tracker in spatially robust environments. It is particularly useful
in long-term tracking scenarios where objects reappear after disappearing from
the frame.

o Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer
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vision and pattern recognition. 2013: 2411-2418.



Machine-to-Machine Evaluation

e Evaluation Mechanism: Restart for VOT Challenge

First frame Last frame
Anchor 1 Anchor 2 Anchor 3 Anchor 4
? \1 \l \

tracking direction Jl

A A

Anchor-based Evaluation Mechanism for VOT2020

» Traditional reset mechanism for VOT is similar to OPER, but this mechanism can

introduce causal correlations between the first reset and subsequent ones,
affecting the evaluation fairness.

» The reset mechanism is replaced by initialization points called anchors. These are

equally spaced along the sequence, removing tracker dependence and ensuring
consistency in evaluation.

Anchor Placement: Anchors are placed every Aanc frames throughout the
sequence. The first and last anchors are at the start and end of the sequence.

Tracking Direction: A tracker is run from each anchor either forward or
backward to ensure the longest possible sub-sequence is used for evaluation.

< https://www.votchallenge.net/




I Machine-to-Machine Evaluation

e Evaluation Mechanism: Restart for VideoCube
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Comparison of OPE and R-OPE

» R-OPE (Restart-Based OPE) is a new reset mechanism introduced in 2023 for the

VideoCube benchmark, particularly designed to address real-world tracking tasks
that involve complex scenarios.

» Key Concept:

* In this mechanism, the tracker is reset not immediately after failure, but at the
nearest anchor point (frame with clear appearance information).

* By choosing optimal restart points, R-OPE avoids repeatedly initializing in
problematic regions of the video.

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



Machine-to-Machine Evaluation

 Evaluation Metris: Precision
» Precision (PRE): Precision is one of the most
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Limitations:

In cases where the target's size
changes significantly or has irregular
shapes, evaluating solely by center
point distance can introduce biases.

commonly used evaluation metrics in single object
tracking tasks, primarily used to measure the
accuracy of the predicted result. It reflects how
closely the predicted target position matches the
actual target position in each frame.

Calculation Method: Precision is typically
calculated by measuring the Euclidean distance
between the predicted target center and the
ground truth center. If this distance is smaller than
a predefined threshold, the frame is considered as
correctly tracked. The proportion of such frames
over the total number of frames gives the
precision.

e Common Threshold: A typical threshold for
tracking tasks is 20 pixels, meaning if the
distance between the predicted center and
the true center is less than 20 pixels, the
tracking is deemed successful for that frame.

o Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer

vision and pattern recognition. 2013: 2411-2418.
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I Machine-to-Machine Evaluation

 Evaluation Metris: Precision
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» Normalized Precision (N-PRE): Normalized precision is calculated by normalizing the
center error as a ratio of the target's scale. Specifically, the target width and frame
resolution are combined as the normalization factor, and the Euclidean distance
between the predicted center and the groundtruth center is normalized. A
normalized threshold is then used to determine if the tracking is accurate.

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



Machine-to-Machine Evaluation

* Evaluation Metris: Success Rate

» Success Rate (SR): SR is one of the key evaluation
metrics used in single object tracking tasks to
assess the overall performance of tracking
algorithms. Unlike PRE, which focuses on the
accuracy of the center point, success rate
evaluates how well the predicted bounding box
overlaps with the ground truth bounding box,
providing a more comprehensive measure of the
tracking performance in terms of object
detection and position tracking.

Ground truth

> Calculation Method: Success rate is determined
by calculating the Intersection over Union (loU)

Limitations: between the predicted bounding box and the

In cases where the predicted and | ground truth bounding box. loU measures the
ground truth bounding boxes overlap between the two bounding boxes as a
have little to no overlap, loU ratio of their intersection area to their union
cannot capture the spatial area. If the loU is greater than a predefined
relationship between them, threshold (typically 0.5), the frame is considered
leading to a zero score. to be successfully tracked.

o Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE conference on computer
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vision and pattern recognition. 2013: 2411-2418.



I Machine-to-Machine Evaluation

e State-of-the-art Results: OTB100
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I Machine-to-Machine Evaluation
e State-of-the-art Results: TrackingNet
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I Machine-to-Machine Evaluation
* State-of-the-art Results: GOT-10k
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I Conclusion
» Machines:

* Traditional Trackers
e Correlation Filter Based Trackers

 Siamese Neural Network Based Trackers

* One-stream Trackers
 LVM-based Trackers

* Impact: These advancements highlight the shift from basic motion
modeling to sophisticated, context-aware algorithms that bring
machine performance closer to human-like tracking abilities.




I Conclusion

» Machine-to-Machine Evaluation:

* Machine-to-machine evaluation has long served as the primary
method for assessing tracking performance, relying on benchmarks
that compare algorithmic outputs with ground-truth data in
controlled environments.

* This approach focuses on metrics like accuracy, robustness, and
computational efficiency, which are valuable for assessing
fundamental tracking capabilities.
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Humans

We will learn some basic information about human
visual theories and abilities.



Humans: Visual Theories

 |ntroduction to Visual Theories

_~~ Auditory information: 11%

.« ¥——-~~ Olfactory information: 3.5%
)~~~ Taste information: 1%

Tactile information: 1.5%

Humans are “visual animals”

_- Visual information: 83% I

Static Visual Ability -
(SvA) °

Detection,
recognition,
classification

Dynamic Visual Ability
(DVA)

Tracking

» Visual theories offer insights into how humans process and interpret visual
information, providing a foundation for improving algorithms.

» Theories such as Feature Integration Theory, Recognition-by-Components, and
Visual Computation have inspired the development of advanced computer
vision systemes.




I Humans: Visual Theories
* Feature Integration Theory (1980)
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» This theory explains how humans combine separate visual features (such as

color, shape, size) to form a coherent object perception. It suggests that the
brain processes simple features in parallel and integrates them into a unified
perception during focused attention.

» Applications: Feature-based tracking algorithms mimic this theory by extracting
multiple object characteristics (such as color, texture, shape) to maintain robust
tracking performance, especially in complex environments.

=% TREISMAN A M, GELADE G. A feature-integration theory of attention[J]. Cognitive psychology, 1980, 12(1): 97-136.




Humans: Visual Theories
* Visual Computation Theory (1982)

3D
Sketch

T

2.5D
Sketch

T

Primal
sketch

!

Retinal
image

» Describes how the brain processes visual
information through a series of hierarchical
stages, starting from a basic edge detection to the
construction of complex, 3D object
representations. The theory breaks down vision
into three main levels:

* Raw primal sketch: Initial edge and texture
information.

e 2.5D sketch: Intermediate-level
representation of objects' positions and
orientation.

* 3D representation: Full object understanding
for recognition and interaction.

» Applications: This theory underlies many modern
tracking algorithms, where visual data is
processed hierarchically, starting from low-level
features (e.g., edges, textures) to high-level
representations (e.g., object shapes, motions).

& Marr D. Vision: A computational investigation into the human representation and processing of visual information[M]. MIT press, 2010.




Humans: Visual Theories
* Recognition-by-Components Theory (1987)

—

N4

Figure 1. A do-it-yourself object. (There is strong consensus in the seg-
mentation foci of this configuration and in the description of its parts.)

» Suggests that humans recognize objects by breaking them down into basic
geometric shapes, called "geons." These geons form the building blocks of
object recognition. The theory argues that recognizing the components is
sufficient for object identification, even if some parts of the object are obscured.

» Applications: Inspired object segmentation techniques in tracking, where
objects are broken down into parts for more accurate identification and
tracking.

& Biederman I. Recognition-by-components: a theory of human image understanding[J]. Psychological review, 1987, 94(2): 115.




Humans: Visual Ability

e Overview of Human Visual Capabilities

» The magnocellular (M cell)
pathway carries information about
large, fast things (low spatial
frequency; high temporal
frequency) and is colorblind.

B Magnocellular Pathway
B Parvoceliular Pathway

» The parvocellular (P Cell) pathway
carries information about small,
slow, colorful things (high spatial
frequency information; low
temporal frequency information).

» Pioneering research from a neurophysiological has allowed distinction between
the two main types of visual acuity:

 Static Visual Ability: The ability to perceive and interpret stationary or
slow-moving objects, whose basic neural support is the parvocellular
system.

* Dynamic Visual Ability: The ability to perceive and track fast-moving
objects or predict their trajectories, whose basic neural support is the
magnocellular system.

2 JW M, Ludvigh E. The effect of relative motion on visual acuity[J]. Survey of Ophthalmology, 1962, 7: 83-116.




Humans: Visual Ability

e Static Visual Capability

E---->-

» Key points for measuring SVA: In assessing this visual ability, some basic
thresholds can be considered:

> Definition: SVA is defined as the

Detection, ability to distinguish the details of
recognition, static objects whose image is
CIGSSIfICGtIOH formed on the retina when the

evaluated subject is also
stationary.

* Minimum detectable threshold: ability to perceive the smallest object in the
visual field.

* Minimum resolution threshold: ability to perceive as separate two objects
that are very close together.

*  Minimum perceptible alignment threshold: refers to the ability to detect
the alignment between two discontinuous segments whose ends are very
close together.

* Minimum recognition threshold: ability to properly identify the shape or
orientation of an object (e.g. a letter). This threshold is commonly referred
to as visual acuity.




Humans: Visual Ability

e Static Visual Capability
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» Measurement Technology: The limit of spatial resolution (the smallest size)
that the subject can visually resolve is reached when he is unable to identify the
letters of a row (or perceive the distance between two points or lines or the
opening of a ring).




Humans: Visual Ability
e Static Visual Capability

» Influencing Factors: Among the subject factors that may influence SVA:

* The most determinants is the refractive error, which, in most cases, would

require the appropriate optical prescription to achieve normal visual
acuity.

* Another very important element is the age of the subject, which is known

to lead to anatomical and physiological changes that adversely affect visual
perception.

» Limitations: There are two limitations that show the inadequacy of measuring
only SVA to assess the functioning of the visual system:

e Many visual stimuli to which we must respond to in real life are often in
motion.

* The SVA tests refer to letters or symbols often displayed under conditions
of maximum contrast (black on white), even though such high level of
contrast is seldom observed in the different situations of daily life.

= Long, G. M., & Zavod, M. J. (2002). Contrast sensitivity in a dynamic environment: Effects of target conditions and visual

impairment.



Humans: Visual Ability

 Dynamic Visual Capability

» Definition: Dynamic visual acuity (DVA) describes the ability to visually resolve
subtle spatial details of an object when the object, the observer, or both, are

moving.

Static Visual Ability »

’

Detection,
recognition,
classification

Dynamic Visual Ability
(DVA)

Tracking

> Correlation between DVA and SVA

Static vs. Dynamic: While dynamic visual
capability often builds on static
capability, research shows that having
excellent static visual capability does
not always mean strong dynamic
capability. Individuals with high static
visual acuity might struggle with tracking
moving objects.

Complementary Abilities: Both
capabilities are essential in designing
tracking systems that can handle a wide
range of visual tasks, from identifying
stationary objects to tracking fast-
moving targets in real time.

=+ Aznar-Casanova, J. A., Quevedo, L. 1., & Sinnet, S. (2005). The effects of drift and displacement motion on dynamic visual acuity

124



Humans: Visual Ability

 Dynamic Visual Capability

» Measurement Technology: Unfortunately, despite the importance of DVA,
specific instruments with proven reliability and validity that enable further
research of such ability are inadequate and chaotic.

> Bernell’s Rotator (1990s): The
dynamic visual acuity values are
recorded as a combination of visual
acuity and speed in rpm.




I Humans: Visual Ability

 Dynamic Visual Capability

» Measurement Technology: Unfortunately, despite the importance of DVA,
specific instruments with proven reliability and validity that enable further
research of such ability are inadequate and chaotic.
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» Ball game (2000s): Research in the 2000s focused on testing athletes’
dynamic visual abilities, primarily in baseball, where the athletes’ eye
movements were recorded and analyzed by cameras.

% Land M F, McLeod P. From eye movements to actions: how batsmen hit the ball[J]. Nature neuroscience, 2000, 3(12): 1340-1345. 126

1 Mcleod P, Reed N, Dienes Z. How fielders arrive in time to catch the ball[J]. Nature, 2003, 426(6964): 244-245.



I Humans: Visual Ability
 Dynamic Visual Capability

» Measurement Technology: Unfortunately, despite the importance of DVA,

specific instruments with proven reliability and validity that enable further
research of such ability are inadequate and chaotic.

Dynamic Visual Acuity Test EIE
(c) 2014. Quevedo, Aznar-Casanova, Solé y G*-Gimenez

LI LER T | R

Direction
%> A 4 K V o
Screen S0 ©®45 @9 © 135 "e
€« K ¥ N e
D180 © 225 @ 270 315
il ) Swinging

x_x : 2
B,  Start Size Series

* Start Speed Series

Current Settings  Load Defauts

Display Test Configuration
Resolution: 1920x1080px 32bits  QOctotype: /Diana20_ng176.bmr
Hz: 60 Background : PRIl
Size: 535 x 300(mm) Advance: 2

Max v 0,33 m/s Distance: 50

| Display Settings | Test Settings

» DynVA (2010s): The DynVA is a computer software designed to assess
DVA. The researcher can select the optotype to be presented in the
two forms of the test: (a)Size Series; (b) Speed Series.

' Quevedo L, Aznar-Casanova J A, Merindano-Encina D, et al. A novel computer software for the evaluation of dynamic visual acuit




Humans: Visual Ability
 Dynamic Visual Capability
» Influencing Factors: Among the subject factors that may influence DVA:
* Age:
O From an evolutionary point of view, it has been found that DVA is

one of the abilities that more greatly deteriorates with age. DVA
deterioration is more marked than SVA, and also begins earlier.

O A research noted that DVA develops rapidly between 5 and 15 years

of age, and that it begins to decline after the age of 20.
* Sports:

O The anticipatory ability based on DVA is crucial to intercept a moving
object (e.g. a ball) and to predict the spatial location of items of
interest.

O This is the main reason why numerous scientific studies report a
greater DVA for elite athletes compared to sedentary population.

OO Moreover, differences have also been found when comparing
athletes’ DVA in a dynamic context (e.g. basketball or tennis) with
other modalities with less “visual” requirements such as swimming,
with a marked superiority in favor of the first.

w4 Beals, R. P., Mayyasi, A. M., Templeton, A. E., &lohnson, W. G. (1971). The relationship between basketball shooting performance and certain visual attributes.

2 National Research Council’s Committee on Vision.(1985). Emergent Techniques for Assessment of Visual Performance.



Visual Turing Test

Human tracking abilities are used as a baseline for
evaluating machine intelligence.



Human-to-Machine Evaluation

* How to evaluate intelligence? Turing Test
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Can machine
. think?

or

Computing Machinery and
Intelligence. Mind, 1950 (236):

1—COMPUTING MACHINERY AND 433-460
INTELLIGENCE
By A M Tossn

1950: Alan Turing, the father of artificial intelligence, proposed the Turing Test.

PSYCHOLOGY AND PHILOSOPHY

£ B The explain of the Turing test:
,.. e Player Cis given the task of trying to
| determine which player— A orB —is a
W) computer and which is a human.
Imitation\ .'. / * The player Cis limited to using the responses
Game C to written questions to make the judgment.

» The Turing test gives a concrete and operational way to measure intelligence
and provides an objective standard for judging intelligence.

» It avoids unnecessary debates about the nature of intelligence.




Human-to-Machine Evaluation]mtroduce human

. . ] factor is important!
* How to evaluate intelligence? Turing Test

R e Can machine
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1950: Alan Turing, the father of artificial inteI.Iigence, proposed the Turing Test.
Keypoint: Human-Machine Comparison

Milestone works in decision-making tasks:
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1997: DeepBlue defeated Garry ~ 2016: AlphaGo defeated Lee 2017: DeepStack defeated

Kasparov in international chess Sedol in a Go competition. human professional players
competitions. in Texas Hold'em poker.




Human-to-Machine Evaluation
 How to evaluate visual intelligence? Visual Turing Test.

» Visual Turing Test is an evaluation paradigm inspired by the traditional Turing
Test, designed to assess whether computer vision systems possess human-level
visual understanding.

* The core objective is to compare machine and human performance on
visual tasks, determining if the algorithm exhibits sufficient intelligence to
match or exceed human capabilities in complex scenarios.

» Principles of Visual Turing Test: The Visual Turing Test requires a machine to
produce results in specific visual tasks, which are then compared to human
results. Typical tasks include object recognition, tracking, and image
classification.

* In the test, if the machine's performance is highly similar to human results
or indistinguishable, it is considered that the machine has achieved
human-like visual understanding.




I Human-to-Machine Evaluation

 Example 1. Visual Turing Test in Classification

NeurlPS .
2021 Partial success in closing the gap between

Oral human and machine vision

Robert Geirhos' Kuntharaju Narayunappa’ Benjamin Mitzkus'

Tizian Thieringer'  Matthias Bethge'®  Felix A. Wichmunn'®  Wiclind Brendel'*

‘ human observers

Umiversity of Tubengen
International Max Planck Rescarch School for Intelligent Systems

Classification accuracy

r

00 02 04 06 0.8
noise strength

s Geirhos R, Narayanappa K, Mitzkus B, et al. Partial success in closing the gap between human and machine vision[J]. Advances in Neural Information 133
Processing Systems, 2021, 34: 23885-23899.




I Human-to-Machine Evaluation

 Example 1. Visual Turing Test in Classification

P
o

‘ human observers

o
o 0]

4 ‘R‘
\
4

o o
ES o

P
N

Classification accuracy

ol
o

02 04 06 0.8
noise strength

human-like?

&S

humans

¢

standard CNNs

x robust?

Big robustness gap

between CNNs & humans

s Geirhos R, Narayanappa K, Mitzkus B, et al. Partial success in closing the gap between human and machine vision[J]. Advances in Neural Information

Processing Systems, 2021, 34: 23885-23899.



I Human-to-Machine Evaluation

 Example 1. Visual Turing Test in Classification
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Human-to-Machine Evaluation

 Example 1. Visual Turing Test in Classification

Are we making progress in closing the gap between human
and machine vision?

17 image processing styles

Participants were explained how to respond (via mouse click), instructed to
respond as accurately as possible, and to go with their best guess if unsure.

% Geirhos R, Narayanappa K, Mitzkus B, et al. Partial success in closing the gap between human and machine vision[J]. Advances in Neural Information 136

Processing Systems, 2021, 34: 23885-23899.



I Human-to-Machine Evaluation

 Example 1. Visual Turing Test in Classification

Are we making progress in closing the gap between human
and machine vision?
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(a) OOD accuracy (higher = better).

The longstanding OOD robustness gap between human and
machine vision is closing.

s Geirhos R, Narayanappa K, Mitzkus B, et al. Partial success in closing the gap between human and machine vision[J]. Advances in Neural Information kY

Processing Systems, 2021, 34: 23885-23899.



Human-to-Machine Evaluation

 Example 2. Visual Turing Test in Image Distortion
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& Fan J, Zeng Y. Challenging deep learning models with image distortion based on the abutting grating illusion[J]. Patterns, 2023, 4(3).




Human-to-Machine Evaluation

 Example 2. Visual Turing Test in Image Distortion
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& Fan J, Zeng Y. Challenging deep learning models with image distortion based on the abutting grating illusion[J]. Patterns, 2023, 4(3).




I Human-to-Machine Evaluation

. Example 2 Visual Turing Test in Image Distortion
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Human-to-Machine Evaluation

 Example 2. Visual Turing Test in Image Distortion
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The gap between humans and deep
learning models is still immense.

hor ver ul ur
Direction of gratings

& Fan J, Zeng Y. Challenging deep learning models with image distortion based on the abutting grating illusion[J]. Patterns, 2023, 4(3).




Human-to-Machine Evaluation

 Example 3. Visual Turing Test in Global Instance Tracking

ﬂ :
' ‘)

Test Frame

Query Ly g IS Eye

Eye Tracker

Schematic diagram of the human visual tracking experiment.

» Eye-Tracking Experiments: By using eye-tracking devices, human visual tracking
data, such as gaze focus points and eye movements during a tracking task, are
collected. This data reflects how humans track objects in visual tasks and serves
as a reference for evaluating the performance of machine vision.

* For the first time, human participants are introduced into the evaluation
process of single object tracking tasks.

~* S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



I Human-to-Machine Evaluation

 Example 3. Visual Turing Test in Global Instance Tracking
» When the target moves smoothly: Humans and machines perform similarly
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* White semi-transparent dot: human
eye tracking result

* Green rectangle: target position

* Green dot: target center

* Red rectangle: SOTA algorithm
tracking result

2 8. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



I Human-to-Machine Evaluation

 Example 3. Visual Turing Test in Global Instance Tracking
» A few challenging factors: Humans are better than machines

similar performance

* White semi-transparent dot: human
| eye tracking result

| + Green rectangle: target position

| «+ Greendot: target center

| * Red rectangle: SOTA algorithm

| tracking result

S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



I Human-to-Machine Evaluation

 Example 3. Visual Turing Test in Global Instance Tracking
» Multiple challenging factors: Both failed

similar'performance
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* White semi-transparent dot: human
eye tracking result

* Green rectangle: target position

* Green dot: target center

* Red rectangle: SOTA algorithm
tracking result

2 8. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



Human-to-Machine Evaluation
* Core Steps in Visual Turing Test

» Task Design: Design identical visual tasks for both the machine and human
participants.

> Result Collection: Collect the results from both the machine and human
participants on the same tasks.

» Result Comparison: Use evaluation metrics such as similarity measures or
success rates to compare machine and human performance.

» Judgment: If the machine’s results are indistinguishable from the human
results, the machine is considered to have passed the Visual Turing Test.




I Conclusion

» Humans:

* Visual Theories
e Feature Integration Theory
e Recognition-by-Components
* Visual Computation

* Visual Abilities
 Static Visual Ability
* Dynamic Visual Ability

* Insights for Al Development: Understanding human visual theories
and abilities, provides foundational insights for enhancing
algorithms. By emulating these human mechanisms, machine vision
systems can achieve more accurate and adaptable tracking
performance.




I Conclusion

> Human-to-Machine Evaluation:

e This approach brings in human factors, such as perception of
occlusions, complex background differentiation, and rapid
adjustments to changing conditions.

* By integrating human perspectives, human-to-machine evaluation
enables a more holistic understanding of a tracker’s capabilities,

moving beyond traditional metrics to capture qualitative aspects of
intelligence and decision-making.
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Trend 1. More Human-like Task
Design



I Trend 1. More Human-like Task Design

* What are the abilities of humans? = Designing more
human-like task to model the dynamic vision ability.

Global Instance Tracking:
Methods should remember
the target and re-detect it in a
new shot.

- perceptual level ability = cognitive level ability

Short-term tracking & Long-term tracking:
Methods utilize local search to locate the target
near to its position in the previous frame.

3E Paradigm

= e | O 00 @+m&®

=+ S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



I Trend 1. More Human-like Task Design

* What are the abilities of humans? = Designing more
human-like task to model the dynamic vision ability.

Global Instance Tracking:
Methods should remember
the target and re-detect it in a
new shot.

- perceptual level ability = cognitive level ability

Short-term tracking & Long-term tracking:
Methods utilize local search to locate the target
near to its position in the previous frame.

Visual

/N | | Information A..— Semant:c
(vor) . == Information

(VLT)

£

=+ S. Hu, X. Zhao#, L. Huang, et al., “Global instance tracking: Locating target more like humans,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 576-592, 2023.



I Trend 1. More Human-like Task Design

* Visual Language Tracking

Lingual Specification Network

"Han with blue lem v
shirt and backpach | STM Dynamic Filter | *
next 1o @ tree” - Generaton _‘m t=0

’ Visual Specification Network

MLP

"Han with blee

shirt and backpack o LST™M
next t0 & traw®

Lingual Specification Attention Network

» Type 1: Tracking using only textual information (Grounding) without relying on
visual data. The target is located and tracked purely through natural language
descriptions.

» Type 2: The target is initially located using textual descriptions, and then visual
data is used for single object tracking without further input from text.

» Type 3: Both text and bounding boxes are used for target initialization, and text
continues to aid in object tracking throughout the process.

~* LiZ, Tao R, Gavves E, et al. Tracking by natural language specification, CVPR 2017




I Trend 1. More Human-like Task Design
* Visual Language Tracking

» Deep Learning-based Tracking Methods: The majority of deep learning-based
object tracking methods belong to Type 3, where both text and bounding box
(BBox) are used for initialization, and text may or may not be used for further
tracking. A smaller portion of methods combine Type 2, where text is only used
during initialization, and further tracking relies solely on visual information.
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First frame: initialization Video sequence: continuous tracking

(semantic information (Use or not use semantic information)
and/or Bbox)

Pre-training dataset
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Representative experimental environment




I Trend 1. More Human-like Task Design

 Example: Multimodal Global Instance Tracking (MGIT)

» Motivation: The VLT / VOT algorithm performs poorly in complex scenes (long
sequences & complex spatio-temporal causal relationships). Some recent
researches have considered studying from a multi-modal perspective:

* Limitations 1. Short sequence (from hundreds of frames to thousands of
frames) = Simple narrative content

* Limitations 2. Inaccurate semantic annotation (describing only the
information of the first frame, and there may be multiple objects in the scene
that flt the description) 2 Mlsgwde algorlthms

" Muiliite sustifod Gan

OTB-Lang quuor sequence: brown llquor honk

; SOT alrplane-l iequence \\hm. airplane landmg on gmund

'mOXlO #0002 10 g >0
.
0 S targe No gualiliod target

TNL2k Arrow_Video_ZZ04_done sequence: the second arrow from left to right

Limitations of existing works

8. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.



I Trend 1. More Human-like Task Design

 Example: Multimodal Global Instance Tracking (MGIT)

» Limitations 1. Short sequence (from hundreds of frames to thousands of frames) =
Simple narrative content = Using longer sequences with more complex narratives

> Limitations 2. Inaccurate semantic annotation (describing only the information of
the first frame, and there may be multiple objects in the scene that fit the
description) = Misguide algorithms = Design a multi-granular annotation strategy
to portray long videos

Target
(Whe)

@K Oiun

Third-party
(Opsanal)

Location
(Whers

Time loterval
(Wihen)

- ¥ i A - :

Activity 1: A male secret agent wearing a black suit walks in the washroom, and stands P
near a man wearing a light grey suit. They fight, then the male secret agent wins, and lifts
the insensible grey-suit man to the washroom cubicle.

Story: A male secret agent wearmg a black suit walks in the washroom, and stands near a
man wearing a light grey suit. They fight, and the male secret agent wins. He then lifts the
insensible grey-suit man to the washroom cubicle. The male secret agent crouches in the
washroom cubicle and checks the insensible grey-suit man. Suddenly, the grey-suit man
wakes up, and they fight together again in the washroom. Eventually, the male secret agent
wins the fight. After the male secret agent talks with a woman wearing a brown suit, he
again lifts the insensible grey-suit man to the washroom cubicle. Finally, the male secret
agent lefts the washroom afier talking with the brown-suit woman,

Structure of MGIT

.-’

8. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.



Trend 1. More Human-like Task Design
 Example: Multimodal Global Instance Tracking (MGIT)

» Rich subject matter - Sufficiently covers the complex spatio-temporal causal
relationships of long videos

—~ | — -—

Story: A pink cartoon pig wearing red clothes talks to her family members on the grassland. Today, the red-clothes pig and her family
aim to visit a castle. They go to the castle in 8 red car, and the red-clothes pig sits m the back. They stop the vehicle nearby the foothills
and walk to the castle. At the entrance of the castle, they meet & white cartoon pig wearing grav armar. The red-clothes pig first talks
with the gray-armor pig. then they are invited to visit the castle. The red-clothes pig walks with her family into the castle and sits beside
a blue-clothes pig on the chair. After that, they have a meal in the castle's living room, and the red-clothes pink pig gets a gift from a
vellow-clothes pig after the meal. Finally, the red-clothes pig walks with her family members on the stairway, and then stands at the top
of the tower

Story: A black gonlla holding a lady m white crouches on a gray building, and some airplanes attack them. He then walks and ¢limbs
to the top of the grey building. After that, he stands atop the grey building, hits an airplane, fights with a gray soldier in the other
airplane, and finglly crouches on the gray b 2

‘#‘r,‘-‘.”"L
a |

\ y: A ball is played By a by willa grey t-shr
white clothes in the vard; then, the man rides this black motorcycle in and black shorts, and then inflated by a man with a red t-shirt and
the vard. As an obstacle race, the black motoreycle first bounces black pants in the skatepark. After that, the basketball s played
across obstacles in the playground, then bounces across obstacles in - by the bov, and then played by the man. After they practuce, the
the street. Afler that, it bounces across obstacles near the pool and  basketball is bolden by the boy from the skatepark to outdoors;
across obstacles in the stream. After a brief break, the black then 1t 1s played by the boy outdoors. Finally, The basketball
motoreyele bounces across obstacles in the playground, then across  then 18 carried away by the boy
obstacles near the pool, and finally acmss stacles in the stream

Story: A blacK'motoreycle TS checked by a man with Orange and Story: A Small bask

Story: A brown cello is played by a man with white shirt and black Story: A red cap is worn by a man with a gray t-shirt on the soccer
pants in the room. court

Several examples of MGIT

* S. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.



Trend 1. More Human-like Task Design
 Example: Multimodal Global Instance Tracking (MGIT)

» Large-scale, Multi-modal
150 long videos
e 2.03 million frames
* The average length of a single video is 13,500 frames

More Modalities »

18000

VISUAL VISUAL+SEMANTIC
16000 @ VideoCube o
14000 \o
(]
o 12000 S
£ O
© (]
£ 10000 n
s o
1] Q
© 8000 2
> OxUVA 2
< 6000 ek E’o
/ TrackingNet g
4000 » LaSOT
[ ® 0TB100 -
2000 e, _~ ® OTB50 - TNL2k
Pe © /__—  GOT-10k ® OTB-Lang A
@ OTB50 TrackingNet GOT-10k TNL2k @ OTB100
OxXUVA ® VideoCube ® OTB-Lang  © LaSOT ® MGIT

Comparison between MGIT with other VOT / VLT benchmarks

8. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.



Trend 1. More Human-like Task Design
 Example: Multimodal Global Instance Tracking (MGIT)

» Applying hierarchical structure inspired by human cognition for multi-granular
annotation

* Action : Determining annotation dimensions from both natural language
grammar structure and video narrative content

O Natural Language Grammar Structure : Subject, Predicate, Object,
Adverbial of time, Adverbial of place

O Video Narratlve Content: T|me Locatlon Character Event

Action I: A mule secret agent Acti o male secrel . Action 4: A male seeret agent

wearing a black suit walks in the It g bhly wearing a biack suit lifts an tnsensible

washroom st stands near 3 man swt fights w "“ a man man wearing a light grey suit w the
wearing a light grey sut weanng |’|1J( grey Suill - washroom cubicle

in the waslwoom 0 the washy oom

Action 9: \m.lurlq.l! cunng i black swt talks
with a woman weanng a brow suit 1n the washroom

Action 7: A male secret agent wearing
a biack surt talks with 0 woman wearing  Bgent \weann, i

# brown suit in the washroom fifts an insens man 1
wearingt a light grey suit 1o {@Target ¥Motion 2T hird-party @Location:

the washroom ¢ lln

An example of action annotation

8. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.



I Trend 1. More Human-like Task Design

 Example: Multimodal Global Instance Tracking (MGIT)

» Applying hierarchical structure inspired by human cognition for multi-granular
annotation

e Action : Determining annotation dimensions from both natural language
grammar structure and video narrative content

* Activity : Using causality as a basis for classification

‘ n " \ 7:' u : Action 4: more

ol suitable as the Result
"1 of activity 1

room

Action I: A male secret agent Action 2: A male \Utl Action 3: A male secres  Action 4: A male seorot agent

weaning a black suit walks in the agent wearmg u black  agent wearmg @ black l wearing a biack sut lifts an trsensible

washroon suit stands near aman - swt fights with aman g man wearing a light grey suit to the |
wearing a light grey sut weanng a light grey .\ul washroom cubicle

i1 the waslwoom 1 1he washy oom
- —

Action 5. more |
SUitable as the Cause £ a male secret agent v raring a black suit

.. 2 - Lhtrk . S fight nul«
for activity 2 ® ...,.,....?*:..k.. — T ashreses'

Action §: A male secret agent wearing a black suit crouches in the I\tnrm(r A male secret agent wearng a black suit fights a

washroom cubicle, and checks & man weanng & light grey suit msan wesiritee a light grev suit in the Wushroom
- -—

tall wrch
Action 7: A male secret agent weanng Action 8: A male secret Action 9: A male secret pgent weunng o hlack st talks
a black suit talks with n woman wearing  sgent weanng a black sust  with a woman weanng a brown suit in the washroom
# brown suit in the washroom fifts an insensible man

wearing & Light grey suit 10 @'Iargﬂ #Motion AThird-party @L Oﬂhﬂ

the washroom cubicie

Cause — Result

8. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.



I Trend 1. More Human-like Task Design
 Example: Multimodal Global Instance Tracking (MGIT)

» Applying hierarchical structure inspired by human cognition for multi-granular
annotation

e Action : Determining annotation dimensions from both natural language
grammar structure and video narrative content

* Activity : Using causality as a basis for classification

e Story: To enhance temporal and causal relationships, guiding words such as
"first, then, after that, finally," can be used on the basis of actions and
activities

Target
(Who)

Mation
(( (Whan

Third-party
(Opsanal)

Location
(Whers

Time Interval
(Whem

near a man wearing a light grey suit. They fight, then the male secret agent wins, and lifts
the insensible grey-suit man to the washroom cubicle.
6080 i W 7005100 T

Y e

- I l' ) :

Story: A male secret agent wearing a black suit walks in the washroom, and stands near a
man wearing a light grey suit. They fight, and the male secret agent wins. He then lifts the
insensible grey-suit man to the washroom cubicle. The male secret agent crouches in the — **
washroom cubicle and checks the insensible grey-suit man. Suddenly, the grey-suit man
wakes up, and they fight together again in the washroom. Eventually, the male secret agent
wins the fight. After the male secret agent talks with a woman wearing a brown suit, he

again lifts the insensible grey-suit man to the washroom cubicle. Finally, the male secret
agent lefts the washroom afier talking with the brown-suit woman.

8. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.



I Trend 1. More Human-like Task Design

 Example: Multimodal Global Instance Tracking (MGIT)

» Expand the evaluation mechanism by conducting experiments under both
traditional evaluation mechanisms (multi-modal single granularity, single visual
modality) and evaluation mechanisms adapted to this work (multi-modal multi-

granularity).

Multi-modal
single granularity

NL+BBox

|ﬂl

NL+BBox

Multi-modal
multi-granularity (]

NL+BBox

Lo Jy ]
NL+BBox

Single visual
modality e

||1i|1l

Action 6 Action 8

Action 2

Action 1

Action 1: A male
secret agent wearing

Action 3 Action 4 Action 5 Action 7 Action 9

ablack suit walks in
. 1 luelvesvoom) 1247 1796 1875 2401 3999 6292 7157 7613 9033
| ] s | C——

Action 4: A male

Action 5: A male Action 7: A male Action 8: A male Action 9: A male

Action 3: A male

Action 6: A male !
secret agent wearing sectet agent wearing secret agent wearing secret agent wearing secret agent wearing secret agent wearing secret agent wearing

Action 2: A male
Secret agent wearing 2 black Suitistands) 2 black suit fights ablack suit lifts an ablack suit crouches ablack suit fights a. ablack suit talks ablack suit lifts an ablack suit talks
ablack suit walks in near a man wearin
the washroom.
the washroom.
1247
- - -
Activity 2: A male secret agent wearing a black suit Activity 3: A male secret agent wearing a black suit talks with a woman wearinga @
wearing a light grey suit. Suddenly, the grey-suit man wearing a light grey suit to the washroom cubicle. Finally, the male secret agent lefts
grey suit. They figh, then the male secret agent wins, and lifs the insensible grey-suit man to the washroom cubicle. wakes Up, and they fight together in the washroom e e ot T brovtiie oo
Finally, the male secret agent wins the fight.
tory: A malesecre( agent wearing a black suit walks in the washroom, and stands near a man wearing a light grey suit. They fight, and the male secret agent wins. He then lifts the insensible grey-suit man to the washroom cubicle. The male secret agent crouches in the washroom
cublcleanﬂ checks the insensible grey-suit man. Suddenly, the grey-suit man wakes up, and they fight together again in the washroom. Eventually, the male secret agent wins the fight. After the male secret agent talks with a woman wearing a brown suit, he again lifts the insensible

Action 1: A male secret agent wearing

insensible man in the washroom with a woman insensible man withawoman
a“ & man wearing with aman wearing wearing a light grey cubicle, and checks man wearing a light wearing a brown wearing a ight grey wearing a brown

ght grey Ly sultmthz washroom aman wearing a e suitin the suummewsnrwm suitin the

|Ighl arey suit washroom washroom.

1796 1875 3999 6292 7157 613 9033
Acivity 1: A male secret agent wearing a black suit walks in the washroom, and stands near a man wearing a light O AT ) brown suit in the washroom. Then, the male secret agent ifts an insensible man
I grey-suit man to the washroom cubicle. Finally, the male secret agent left the washroom after alking with the browrssuit woman

9033
S 1247 1796 - 1875 - 2401 3999 6292 7157 - 7613 >
- 1 - 1247 = 1796 .L875 = 2401 3999 5292 2157 = 7613 ;9033

Adapted evaluation process for different task settings

8. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.



I Trend 1. More Human-like Task Design
 Example: Multimodal Global Instance Tracking (MGIT)

» Incorporate semantic information into the GIT task and introduced the Multi-modal
GIT (MGIT) task = Visual reasoning in complex spatio-temporal causal relationships.

-'Eh. Third-party

(Optional)
@ Location
(Where)

Time Interval
(When)

Action
5

Global Instance Tracking (GIT)

A long-term tracking demo

Short-term tracking & Long- » Methods should
term tracking

» Methods utilize local
search to locate the target

Action
6

Action
7

remember the target

Action
8

and re-detect it in a new

. . shot—> cognitive level setn
near to its position in the
previous frame - A Visual ———  Semantic
Information —— i
perceptual level 4 —. [nformatiop

8. Hu, D. Zhang, M. Wu, et al., “A multi-modal global instance tracking benchmark (mgit): Better locating target in complex

spatio-temporal and causal relationship,” in the 37th Conference on Neural Information Processing Systems (NeurlPS), 2023.
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I Trend 2. More Realistic Data Environment

* What are the living environments of humans? 2
Constructing more comprehensive and realistic datasets.

Tcolor-128

Random OTB50 NUS-PRO OxUvA LaSOT
Videos ALOV++ OTB100 UAV123 DTB TrackingNet =~ GOT-10k UAVDT TOTB VideoCube
VOT-ST VOT-ST VOT-ST VOT-ST VOT-ST VOT-ST VOT-ST VOT-ST VOT-ST VOT-ST
VOT-TIR VOT-TIR VOT-RT VOT-RT VOT-RT VOT-RT VOT-RT VOT-RT
VOT-TIR VOT-LT VOT-LT VOT-LT VOT-LT VOT-LT
VOT-RGBD VOT-RGBD VOT-RGBD VOT-RGBD
VOT-RGBT  VOT-RGBT VOT-D

Short-term — Long-term Spl.a::gtec;rsrfpatl)eral
>
Small-scale Multimodal

discontinuity

» As computer vision technology advances, the need for evaluation environments
that closely resemble the real world becomes more important. Realism in
evaluation environments refers to simulating the dynamic, diverse, and

unpredictable nature of the real world to assess the algorithm’s performance in
practical scenarios.




I Trend 2. More Realistic Data Environment

* From model-centric to data-centric

nawre, | —— PERSPECTIVE
machine intelligence Mg/ Aok ong 10AG3RAZZS6-02 0516

') Checx for Lpoaes

Advances, challenges and opportunities in
creating data for trustworthy Al

Weixin Liang', Girmaw Abebe Tadesse /%, Daniel Ho', Fei-Fei Li', Matei Zaharia', Ce Zhang* and

James Zou©\EEE

Department of Compuder Science. Stanford University, Standord. CA USA. 1BM Ressarch = Alrica, Narobi, Kenys, Stanford Low Scheol Stanford
University, Stanford, CA, USA Deoarlment of C \.orrou er Science, ETH Zurich, Zurich Switzerland. *Department of Blomedical Data Science. Stanfard

University, Stanford, CA, USA. “e-mai

Model-Centric Data-Centric

Focus on Focus on
Al = Code +_(Data
J@

shift in focus

» More attention needs to be placed on developing methods and standards to
improve the data-for-Al pipeline.

* Liang W, Tadesse G A, Ho D, et al. Advances, challenges and opportunities in creating data for trustworthy Al[J]. Nature Machine

Intelligence, 2022, 4(8): 669-677.
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I Trend 2. More Realistic Data Environment
* From model-centric to data-centric

Model centric Data centric
Given: Data Focus: Improving model Focus: Improving data Given: Model
Litdl
MNIST Real world = -
L 253
zRaf
coco qlenslf
mrnnl
Costly
ImageNet Standard models
: Automated machine
Common Regulations :
benchinans learning (AutoML)

» Model-centric research typically considers data as given and focuses on
improving the model architecture or optimization on this data.

» Data-centric research focuses on scalable methods to systematically improve
the data pipeline with data cleaning, selection, annotation and so on.

% Liang W, Tadesse G A, Ho D, et al. Advances, challenges and opportunities in creating data for trustworthy Al[J]. Nature Machine

Intelligence, 2022, 4(8): 669-677. 167




I Trend 2. More Realistic Data Environment

* From model-centric to data-centric

> Key Steps:
» Step 1. Dataset design for Al
» Step 2. Data sculpting for Al
» Step 3. Data strategies for model testing

I I
I I
|| Data design Data sculpting Datasiisgion :
1| for Al for Al Ior e I
: testing :
I I
e o e o o o o e o o e e e v e e e e e e i i e e e e e g i
* Data sourcing * Data valuation * Data ablation
* Data coverage * Data programming * Error discovery
* Engaging community * Data assertion * Subgroup bias
* Data documentation * Data augmentation * Data stream

Data policies: data agency, privacy and balancing regulation >

with needs of trustworthy Al

=% Liang W, Tadesse G A, Ho D, et al. Advances, challenges and opportunities in creating data for trustworthy Al[J]. Nature Machine

Intelligence, 2022, 4(8): 669-677. 168



Trend 2. More Realistic Data Environment
e Step 1. Data design for Al

» Once an Al application has been identified, designing the data—namely
identifying and documenting the sources of data—to develop the Al model is
often one of the first considerations.

Single object

Model free
Causal tracker
Single camera

Short term

Single object

Model free
Causal tracker

Single camera

Single object
Model free

Causal tracker

~

Short-term tracking

Cancel
short term

Long-term tracking

Cancel
single camera

Global instance
tracking

Modeling

Human visual tracking

ability

TASK

-

&

Allow target I é
dlsappearanc]

Long-term tracking

Allow shot-cu

Global instance
tracking

Modeling

Real world

Normal space

VOTLT2019

VideoCube

Fast motion

Abnormal scale

Blur bounding-box

Abnormal ratio

Abnormal illumination

Correlation coefficient

Delta illumination

Delta scale

Delta ratio

Delta blur bounding-box

Challenging space /

ENVIRONMENT




I Trend 2. More Realistic Data Environment
e Step 1. Data design for Al

» Design should be an iterative process—it is often useful to have pilot data to
develop an initial Al model and then collect additional data to patch the model’s
limitations.

e Zmamm 201711 @ CVPR 2018.10 @ TPAMI Submit

T Submit 10,000 videos

o P R 1,000 videos Open-set evaluation
MEE T Generalization

GOT-10k

2020.03 @ Eccv 2021.05 @ TPAMI Submit
Submit GIT task
GIT task 500 videos
VideoCube 250 videos Eye-tracking

Tiny version = Official version




I Trend 2. More Realistic Data Environment
e Step 1. Data design for Al

» A critical design criterion is to ensure that the data are appropriate for the task
and have good coverage to represent diverse users and scenarios that the
model can encounter in practice.

B vav2oL(5)

B vavi23 9)

B ~us_PrO(12)
B p1B(15)

B TrackingNet (21)

GOT-10k Statistics of Subtrees

passive motion | object

= g:g\zil (52 g‘;z) Number of Object animal | vehicle | person object part
B vourwess 23 Classes Across Datasets Targets| 3.8k | 24k | 25k 0.5k 1.0k

I Tcolor-128 27) BBoxes| 360k | 380k | 487k 70k 214k

- VOT2019 (30)
= [nulchc(-(V[[; (30) Sub-classes| 382 154 1 11 15

B Nrs 33) Avg. Duration| 9.5s | 159s [ 19.9s 14.1s 20.8 s
I ALOV+ (59)
I Las0T (70)

GOT-10K: 563 object classes, based on WordNet

GOT-10k (563)

ST g | Smwmpotlhlnluuh'p

7 Spatio-
/ j 1emporal

Relationship

.
l/
L Film
Narrative
\
\ (e Onaracnar
\ \ 4
< [
'*— Lol [
b— L
™ v i s S cmulwmcmm
(a)The &D principle of data coliection [B)The specific example of 60 principle

VideoCube: use 6D principle to model the real scenarios




Trend 2. More Realistic Data Environment
e Step 1. Data design for Al

» When representative data are hard to access, synthetic data can potentially fill
some of the coverage gaps.

UAV123: Rotary-wing UAYV (DJI $1000) + UAV simulator (UE4)

172



I Trend 2. More Realistic Data Environment
e Step 2. Data sculpting for Al

» Once an initial dataset is collected, a substantial amount of work is needed to
sculpt or refine the data to make it effective for Al development.

#00000636 !#00000666- . .
o
{ o q 5
‘\,

8%

initial annotation fine-tuned annotation |
LaSOT: fine-tuning initial annotations
d Specific Annotation
w—— |nitial Annotation
Main
Part Bardier -
Part

VideoCube: specific annotation rules




Trend 2. More Realistic Data Environment
e Step 2. Data sculpting for Al

» A human-in-the-loop approach to reduce annotation costs is to prioritize the
most valuable data for humans to annotate.

RGN T T T T T 1 7 Verifigrs | Authors

Algorithm 1: Framework ol generate the automatic
annotation
Input: F'y: previous mannually labeled bounding-box; Nge:
next mannually labeled bounding-box; .,
bounding-box generated in forward onder; By
bounding-box generated in backward order
Output: [#: bounding-box of present {rame
1 calculate Dy = DIoU( Py, Nyt )
2 calculate Dz « Dot { Byoa, Brey)
f» Situation 1: a high value of [)y indicates
wministure novenent, and the location can be

|
| |
|

Sell i B
1€ % I~z¢’wmlmhn

dirvctly caloulated o/
s il Dy > 7y then
v | H = average Fye, Ngi) retum I3
s caleulate £y = Encloss( Py, Nyt)
/v Sltustion 2: o high valow of Dy indicebes notnmal
moveoent, and this (s the mseot cosmon sitwation.
Mo asnwee that the motion range of instancos In

imtermodiate [rane doos nol excoed Ky ./
o il Dy > 7, then
’ if Doth By, and 1, are enclosed by 1) then
. L 0w average| By, Baog)
. else if HBuou v By is enclosad by E) then
i | 8= Byay 06 B = By
n else if both 15, amd B, are outside Fy then
1 | B = average{ Py, Nyt)

0 wtum B
/e Situation 3: Lhe situatlion does not belong Lo the
sbove twn oonditionn Iadicates "“llﬂ maovemsnt or

shol awitching ./
w if presact frame i the last two frome in a shot then
“ L I average( Bpas, Pye)
s else if prosact frame is the first too frame in @ shot then
” [_ U« average(Bucg, Ngt)

w clse

”» caleulate 2y = Diol! Py, Bpas)
» calculate Dy « DIoU( Ny, Buoy)
n if Dy > 1)y then

o L B = Intersection{ By, Byos)
n else

» LB Intersection{ ), By.g)

» wtum i

VideoCube: automatic annotation




I Trend 2. More Realistic Data Environment
e Step 3. Data strategies for model testing

» An important aspect of evaluation is to verify that the Al models do not use
‘shortcut’ strategies.

Training set
A A A A B B B B

Categorization by (typical) human Categorization by neural network

ii.d. test set

0.0.d. test set
different location

An example of shortcut

When trained on a simple dataset of stars and moons, a standard fully
connected neural network learns a shortcut strategy: classifying based on

the location (stars in the top right or bottom left; moons in the top left or
bottom right) rather than the shape of the objects.

N e a3

" Geirhos R, Jacobsen J H, Michaelis C, et al. Shortcut learning in deep neural networks[J]. Nature Machine Intelligence, 2020, 2(11):

665-673. 175



Trend 2. More Realistic Data Environment

e Step 3. Data strategies for model testing

All possible decision rules High * 3 —x /
W=
/ //' I [
f / ! I'
X s [ / I |
Shortcut solution < ' |
performs well on training g Training iid. | 0.0.d.
set, i.i.d, test set s set test set i test set
=
Q@ ’ / I "
J
/ | /
intended solution { I ,/
performs well on training ' / //’"
set, i.i.d. and all relevant / G __..-k
0.0.d. test sels Low: |=fee—emr ——— 1,

© - Rules Qg
| MLmodl#1 - % teanamieBy . 3
. MLmodel #2 ' ‘

Shortcut Intended

features [eatures

By counting the number
of white pixels (moons
are smaller than stars)

* By location
By shape

> Li.d. test solutions, including shortcuts: Decision
rules that solve both the training and i.i.d. test
set typically score high on standard benchmarks,
but may fail in 0.0.d test set.

Shortcuts are decision rules that perform well on i.i.d. test data but fail on o0.0.d.
tests, revealing a mismatch between intended and learned solution.

4% Geirhos R, Jacobsen J H, Michaelis C, et al. Shortcut learning in deep neural networks[J]. Nature Machine Intelligence, 2020, 2(11):

665-673.



I Trend 2. More Realistic Data Environment

e Step 3. Data strategies for model testing

» Towards o0.0.d. generalization tests for detecting shortcuts:

* If model performance is assessed only on i.i.d. test data, we cannot tell
whether the model is actually acquiring the ability we think it is, since
exploiting shortcuts often leads to deceptively good results on standard
metrics.

e 0.0.d. generalization tests should become a standard method for
benchmarking models.

10000 GOT-10k uses open-set evaluation (no

overlap between training and testing
categories) for generalization ability
evaluation

1000

100

10

number of videos object classes motion classes




I Trend 2. More Realistic Data Environment

 Example 1: SOTVerse (Dynamic and Open Task Space for VOT)
» Motivation

Sh o oWaAE  EIETaaE
-uann--- |
:--u lll! FREENTE

Existing datasets:

* Static and closed after

Ml Y .
S TRk St : construction
. —— : L .
OTB-2013/2015 GOT-10k VOT2016&2018 VOTLT2019 LaSOT VideoCube  ° Ignore challenging factors
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Step 1.
Dataset selection Normal space Challenging space

» Integrate diverse environments to create SOTVerse, a dynamic and
open task space comprising 12.56 million frames. Scale Variation
» Within this task space, researchers can efficiently construct

different subspaces to train algorithms, thereby improving their

visual generalization across various scenarios. Motion Blur
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I Trend 2. More Realistic Data Environment
e Example 1: SOTVerse (Dynamic and Open Task Space for VOT)

» Automatically mine challenging subsequences that meet the requirements based

on the research goal.
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I Trend 2. More Realistic Data Environment
e Example 1: SOTVerse (Dynamic and Open Task Space for VOT)

» Comparison with human manual annotations: Subspace construction strategy

can effectively mine highly challenging sequences
* Efficiently focus on sparsely distributed challenging video frames
* Effectively mine challenging sequences ignored by human manual annotation
* More accurate judgment on the starting and ending points of highly challenging
sequences

Exampie of the deita seate challenge

i i e
|

I L
”Il D—I: ’-E ’-E ey
RE R M -~ Owte ok
e o e e ARG NG o A
SOTVerse (Original Value) VOT Annotation

ap o p o
!!I!!

WJMJN“ TINTVRY W‘MA

SeSINISSEEEASREIAESECREGEETESSIEEFEERETE ~Ea0sasRRNqRERNARARRERRRRGEENTRE2RTaRENTE

@ Sub-Sequence ($562-#633) found by Beth the proposed method sad the masual annctatians of YOT

«* 8. Hu, X. Zhao#, and K. Huang, “Sotverse: A user-defined task space of single object tracking,” International Journal of Computer
Vision (1JCV), 2024.




I Trend 2. More Realistic Data Environment
e Example 1: SOTVerse (Dynamic and Open Task Space for VOT)

¥ | 1> Some key issues that are masked
I |
i '. : by traditional evaluation
! ! methods:
| Ty I « How does the SOTA algorithm
| .
E Mt s e : perform when faced with
| B e outsmmimcon |1 difficult frames?
i t Vil i ——— i * To which difficult challenges
] ...;:....... : are algorithms more
: Normal space Challenging space / E Susceptlble?
I EMMIRONMENY ! * How well does the algorithm
|
I | EVALUATION : track over long sequences?
|
1 D by momber ofrestarts 1
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i| | @K ool
1 tracker  boundingbox
Test visual | '@\ e !
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' m@ ] Jreme : on scores under traditional
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|
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I Trend 2. More Realistic Data Environment
e Example 1: SOTVerse (Dynamic and Open Task Space for VOT)

» Some key issues that are masked by traditional evaluation methods: How
does the SOTA algorithm perform when faced with difficult frames?
 Difficult frame: correlation coefficient between two frames <0.75
e Challenge plot: Calculates the success rate of the algorithm over all
difficult frames
O The averaging form used in existing evaluation metrics will mask
the bottleneck of the algorithm's ability on difficult frames.

Success plots on OT8 (based on loU) ; Challenging plots on OTB (based on loUu=0.5)
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I Trend 2. More Realistic Data Environment
e Example 1: SOTVerse (Dynamic and Open Task Space for VOT)

» Some key issues that are masked by traditional evaluation methods: To which
difficult challenges are algorithms more susceptible?
* Failure frame: frame where algorithm tracking fails (loU<0.5)
e Successful frame: frame where the algorithm successfully tracks
(loU>=0.5)
* Attribute plot: Find the attribute with the largest difference between the
failure frame and the success frame
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I Trend 2. More Realistic Data Environment
e Example 1: SOTVerse (Dynamic and Open Task Space for VOT)

» Some key issues that are masked by traditional evaluation methods: How
well does the algorithm track over long sequences?
* Restart mechanism (R-OPE): When an algorithm failure is detected, the
algorithm is reinitialized at the nearest restart point.
* Robust plot: measures the number of restarts of the algorithm, and the
longest sequence of successful tracking.
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I Trend 2. More Realistic Data Environment
e Example 1: SOTVerse (Dynamic and Open Task Space for VOT)
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I Trend 2. More Realistic Data Environment
 Example 2: DTVLT (Diverse Multimodal Benchmark for VLT)

» Motivation: Most VLT benchmarks are annotated in a single granularity and lack
a coherent semantic framework to provide scientific guidance.
» Current VLT benchmarks considers studying from different perspective :
* Limitations 1. Semantic annotations in OTB99 Lang mainly describe the first
frame, which may misguide the algorithm.
* Limitations 2. Sequence in MGIT has such complex text that they are not
conducive to algorithmic learning.

Mo Crowds

- SRR EEERESS. > Research objective : Using LLM
: o A & to provide multi-granularity
- = . L S semantic information for VLT
it ' “=x  from efficient and diverse
_. E——e ~ perspectives, enabling fine-
e : T grained evaluation. This work
' | = can be extended to more

datasets to support vision
datasets understanding.

I} OT8B Humans

. 3 il B \Z 2 PRIt
MGIT %2 Sequence deagth: 12703 Official annotation: *A white goose walks 10 & room o the yand,
and then the goose is fed by a man with blue jeans in the room. After that, the goose walks to a basin filled with water, and
plays in the basin. Then the goose walks 102 small pand with many goldfish in the yard, and plays in the pond. Finally, the
gooss walks 1o & lake, sod plays in the lake.™

% LiX, Hu S, Feng X, et al. DTVLT: A Multi-modal Diverse Text Benchmark for Visual Language Tracking Based on LLM[J]. arXiv preprint arXiv:2410.02492,

2024.




I Trend 2. More Realistic Data Environment
 Example 2: DTVLT (Diverse Multimodal Benchmark for VLT)

» Diverse texts matter 2 Integrating the LLM into the text generation process,
offer a diverse environment conducive to VLT research.

Concise description: "A bear in the water”

N
)/

“brown bear hunting on Detailed description: "A brown bear is
the ground” seen in the middle of the image, walking
through a river, The bear is in the water,

and it appears to be looking for fish.”

(b) Automatic Generation

Concise description:
- Mk Image “A bear in the water”
Decades Encoder Mask
] e Detailed description:
Prompt  § = - s I = UM “A brown bear is seen
~ Encoder  PRAAR doyx ¥ Encoder " in the middle of the
_ - . image, walking through
| Fivene N / a river. The bear is in

| Text Tokenization & Embedding ———— AhE et ande
N appears to be looking

<image>\n This provides an image. \ for fish.”
Prompt: Short/long description of <region>? !

SAM Osprey

(¢) Framework of DTLLM-VLT

% LiX, Hu S, Feng X, et al. DTVLT: A Multi-modal Diverse Text Benchmark for Visual Language Tracking Based on LLM[J]. arXiv preprint arXiv:2410.02492, 187

2024.



I Trend 2. More Realistic Data Environment

 Example 2: DTVLT (Diverse Multimodal Benchmark for VLT)

» Applying multi-granularity generation

* Initial texts: Following the text annotations method in OTB99_Lang and
TNL2K, we generate text for the initial frame of each video.

* Dense texts: Considering the worst situation and infer that the algorithm
lacks an efficient memory system. Consequently, at 25 FPS, equating to
every 100 frames in 4 seconds, we supply the algorithm with relevant
generated text.

a person walking on & person In 3 white 8 person in a white hi
.G the sidewalk 100 shirt F shirt F—m a persan in white I
m F TN M—— |
D—:a:u --------------------------------
qrory 290 framel A person Is seen walking away from the camera. She is weanng a white shirt and a helmet, indicating she might be a pedestrian
.D B | |1 She is located towards the right side of the image, a bit further in the background
very lwﬁm} |1W A person, dressed in 8 white shirt, is seen walking across the busy street. She & located In the middie of the

scar, amidst the bustling traffic, and is ane of the several pedestrians making their way across the street.

A person is seen walking away from the viewer's perspective. She is wearing a white shirt and appears to be in motion. She is
]zoo located towards the left side of the image, and her back s turned towards us.
- : >
I ' A person & seen walking away from the camera. She is wearing a white shirt and black pants, and his back is
tumed towards us. She appears to be In motion, perhagps walking towards the right side of the image

a person walking on I

I the sidewalk

uwolt"'ﬂﬂ E -------‘

~
>

st e A persan is seen walking away from the cameta, She (s wearing a white shiet and a halmet, indicating she might be a pedestrian.
Gﬂf !; She Is located towards the right side of the image, a bit further in the background

Ineinl detalled >
fust frame

25 Li X, Hu S, Feng X, et al. DTVLT: A Multi-modal Diverse Text Benchmark for Visual Language Tracking Based on LLM[J]. arXiv preprint arXiv:2410.02492, 188

2024.
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I Trend 2. More Realistic Data Environment

 Example 2: DTVLT (Diverse Multimodal Benchmark for VLT)

» Applying multi-granularity generation
* Concise texts: If the BBox already sufficiently describes the temporal and
spatial changes of the object, the text descriptions should focus on providing
essential semantic details like the category and positions of the object.
* Dense texts: In cases where the BBox lacks sufficient information for effective

learning by the tracker, more elaborate texts are necessary to compensate for
the missing temporal and spatial relationships.

N Ll
{ I a person walking on # person In 3 white o person in a white 2 peraon in white I
|, the sidewalk 100 shirt F)‘G shirt Foo
'Gm i _— ——ﬁl
o—“’:" L B N B _ B B B &R §B §B _§B _§B _§B §B B §B B §B _§B § &R B _§B §B N N N N _ N _§N_ §}N ]
qrory 290 framel A person Is seen walking away from the camera. She is weanng a white shirt and a helmet, indicating she might be a pedestrian
.D u |1 She is located towards the right side of the image, a bit further in the background
Dense dataded |

|1W A person, dressed in 8 white shirt, is seen walking across the busy street. She & located In the middle of the
scona, amidst the bustling traffic, and is ane of the several pedestrians making their way across the street

avery 100 frame |

A person is seen walking away from the viewer's perspective. She is wearing a white shirt and appears to be in motion. She is
]zoo located towards the left side of the image, and her back s turned towards us.

I '300 A person i seen walking away from the camers. She is wearing o white shirt and black pants, and his back is
a person walking on l tumed towards us. $he appears to be in motion, perhaps walking towards the right side of the image

| :
| the sidewalk
@ Il I

T T T
! A persan is seen walking away from the camers, She |s wearing a white shirt and a helmet, indicating she might be & pedestrian.
GE 5 I 1 Shelslocated towards the right side of the image, 3 bit further in the background

Ineial detalled >
fixt frame

~
>
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Trend 2. More Realistic Data Environment
 Example 2: DTVLT (Diverse Multimodal Benchmark for VLT)

> Diverse Generation
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Trend 3. More Human-like
Executors



I Trend 3. More Human-like Executors

* Optimizing algorithms from the perspective of human-like
modeling: understanding video content more like humans.

. ImageNet AlphaGo DeepStack DeepMind
]B?\I‘ DeepBlue  jyssification accuracy ,\lph:i(iu Zero LiBrulu: :\lp;uSlu:
Chess Al over human Go gaming Al StarCraft Al

s B
1 | | 1

1996 2011 2016 2017 2019
Re Computational Perceptional Cognitive
intelligence mtelligence intelligence
Can store, compute, and Can listen, talk, look, and Can understand, thinking, and cognize. Typical

Turing test

Alan - Turing Search. Typical tasks recognize. Typical tasks tasks include comprehend, inference, thinking,
1950 include scientific include image decision, etc., with an emphasis on cognitive
The founder  Computation, logic understanding, speech reasoning and automatically learning ability.
of Al processing, statistical — recognition, language
query, etc. transiation, etc. Most are

i dos. Wriing ol
» Goal of Computer Vision Research: Equip machines with human-like visual
intelligence. The goal is to achieve machine intelligence at multiple levels.
 Computational Intelligence: Responsible for signal processing, logical
processing, and statistical calculations, serving as the foundation for
higher intelligence levels.

* Perceptual Intelligence: Involves the ability to perceive and capture
visual information from the environment, such as image recognition
and object detection.

e Cognitive Intelligence: Includes memory, prediction, and reasoning
capabilities, forming the basis for understanding and inferring future
actions.

% Huang K Q, Xing J L, Zhang J G, et al. Intelligent technologies of human-computer gaming (in Chinese). Sci Sin Inform, 2020, 50: 540-550, doi: 192

10.1360/N112019-00048



I Trend 3. More Human-like Executors

 Example 1. Human-like VOT via Visual Search Ability (Better
Perceptual Intelligence)

LI T WL

N oW
uuuuu

different background

L---_: different position

different appearance
frame #t frame #t+1 frame #it frame #t+1

background

local search: applies only to continuous motion assumption




I Trend 3. More Human-like Executors

 Example 1. Human-like VOT via Visual Search Ability (Better
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* local search: applies only to continuous motion assumption

Query-Guided RCNN Top-1 Prediction as the :
Tracking Result !

! Query
Image
{Frame 1)

Feature Modulation

» global search: zero cumulative error, but it is slow and easily interfered by background
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* local search: applies only to continuous motion assumption

» global search: zero cumulative error, but it is slow and easily interfered by background

* |ocal search + global search:
good idea, but the timing of the
switch is difficult to determine

Skimming
Model

How the human visual system accurately finds the
target in a new frame?
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(B) Central-peripheral dichotomy illustrated in human vision
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» Central-Peripheral Dichotomy: The human visual system is divided into central

vision and peripheral vision, both playing distinct roles in the process of visual
perception.

Peripheral Vision: Responsible for detecting a wide visual field, mainly
used for identifying salient areas in the environment.

Central Vision: Responsible for fine visual processing, mainly used for
target recognition and decoding.
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» Process of Encoding, Selection, and Decoding:

* Encoding: Visual information from the peripheral field enters V1,
generating a saliency hotspot map for further processing.

* Selection: Peripheral vision uses saliency and top-down control to guide
gaze shifts to areas of interest.

* Decoding: Central vision decodes detailed information of the selected area
through feedforward and feedback streams, enabling object recognition
and scene understanding.

» Peripheral vision scans the environment broadly for potential targets, while
central vision focuses on high-precision visual decoding.
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(a) The eycoﬂm&selection-decoding framework of CPD, and human visual model
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(b) Architecture of the proposed CPDTrack

~10°6 bits

[ feature of template

» We constructed a model of the Central-Peripheral Dichotomy theory in cognitive
science, utilizing the one-stream structure in visual object tracking.

* D. Zhang, S. Hu, et al., “Beyond accuracy: Tracking more like human via visual search,” in the 38th Conference on Neural

Information Processing Systems (NeurlPS).
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Table 3: Representative Benchmarks in STT, LTT, GIT and STDChallenge Benchmark

Min Mean Max

Total

Subtask Benchmark Videos faines  foame  frame: [ feanhe absent  shotcut
OTB2015(5) 100 71 90 3872 59K X X
VOT2016[54) 60 41 357 1500 21K X X
STT VOT2018]53) 60 41 36 1500 2k X X
VOT2019(44) 60 41 3321500 20K X X
GOT-10k(17) 10000 29 1499 1418 145M X X
- VOTLT2019[34) 50 1389 4305 29700 25k ¢ X
’ LaSOTTT) 1400 1000 2502 11397  3.5M v X
GIT _ VideoCubef3) 500 4008 14920 29834 746M ¢V V'
LU sTDChallenge Benchamek 252 1000 5192 29700 13M ¢ v

GIT

We study the discontinuity of
the target state in space and
time (i.e., STDChallenge), which
comprises two challenges:
absent and shot-cut.

(na T n.s) ’ la.

STD =7

» We extracted sequences from LTT and GIT tasks that include the STDChallenge to
form the STDChallenge Benchmark, aiming to suppress the bias of a single dataset.

» At the same time, we quantified the difficulty of the STDChallenge, taking into
account the challenges of ‘disappearance-reappearance’ and ‘shot switching” within

the sequences.

» We divided the STDChallenge Benchmark into three groups with different difficulty
levels based on the STD metric and selected five sequences from each group to
form the STDChallenge Turing, which is used for the Visual Turing Test.

=+ D. Zhang, S. Hu, et al., “Beyond accuracy: Tracking more like human via visual search,” in the 38th Conference on Neural

Information Processing Systems (NeurlPS).
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template

S

GroundTruth CPDTrack(ours) SeqTrack MixViT OSTrack
Benchmark: VideoCube Sequence:"436”

=+ D. Zhang, S. Hu, et al., “Beyond accuracy: Tracking more like human via visual search,” in the 38th Conference on Neural

Information Processing Systems (NeurlPS).
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» Human results do not necessarily mean correctness, but humans can usually
quickly re-locate the target after the STDChallenge.

» In the second image of the first row, humans can recognize environmental
factors closely related to the target.

» In the second image of the second row, even when the target is absent, humans
are not distracted by the background.

» In the fifth image, humans are robust to occlusion.

=+ D. Zhang, S. Hu, et al., “Beyond accuracy: Tracking more like human via visual search,” in the 38th Conference on Neural

Information Processing Systems (NeurlPS).
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-y e wewire BANDICAM com

~~~~~~

“The gun on the table”

> Limitations of Static Cues:

* Text-template cues are static and fixed, whereas objects in the video are
dynamically changing.

Static cues cannot continuously provide reliable reference for similarity
matching.

=+ X. Feng, X. Li, S. Hu, et al., “Memvit: Visual-language tracking with adaptive memory-based prompts,” in the 38th Conference on

Neural Information Processing Systems (NeurlPS).
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Template

Query : “the gun on the table."

= = Consisioncy Detween language a0 Eames
l Comsaton cooticients Detweern HaTpiale and hames

» Necessity of Introducing Temporal Information:

* Dynamically Changing Targets: The described scene in the text may not
align with the actual target in the video, and the target undergoes
significant appearance changes across frames, leading to lower matching
accuracy with the image template.

* Changing Environmental Factors: In the video sequence, both the
background and the state of the target are constantly changing, making it
difficult to handle these dynamics with static templates alone.

» Utilize Temporal Information to Provide Dynamic Cues: By introducing temporal
information, the tracking task can make use of frame-to-frame changes, enabling
better target localization and tracking.

=+ X. Feng, X. Li, S. Hu, et al., “Memvit: Visual-language tracking with adaptive memory-based prompts,” in the 38th Conference on

203

Neural Information Processing Systems (NeurlPS).
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» MemVLT:

* Aims to address the issue where static, fixed multimodal cues struggle to
continuously guide tracking of dynamically changing targets.

* Based on complementary learning theory, it models and stores dynamic
changes in the target and adjusts the static template accordingly.

O The human brain has two areas for storing memories: the
hippocampus for short-term memory and the neocortex for long-term
memory.

O The interaction between long and short-term memory promotes
human adaptation to different environments.

Hippocampus
(Short-term memory)

=+ X. Feng, X. Li, S. Hu, et al., “Memvit: Visual-language tracking with adaptive memory-based prompts,” in the 38th Conference on

Neural Information Processing Systems (NeurlPS).
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» Core Design:
 Memory Interaction Module: Models dynamic changes in the target and
adjusts the static template.
 Memory Storage Module: Stores the dynamic features of the target.

=+ X. Feng, X. Li, . Hu, et al., “Memvlt: Visual-language tracking with adaptive memory-based prompts,” in the 38th Conference on
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Neural Information Processing Systems (NeurlPS).
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Language ﬁescnptlon “the old man wearmg white shirts is mbii? in the middle 0f
ke \2 the road” "

i
J

s Ground Truth s Ours (MemVLT) JOIntNLT = MMTrack

Benchmark: TNL2K Sequence: monitor_E-bike6

o+ X. Feng, X. Li, S. Hu, et al., “Memvlt: Visual-language tracking with adaptive memory-based prompts,” in the 38th Conference on

Neural Information Processing Systems (NeurlPS). 206
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 How to evaluate dynamic visual intelligence?

Dynamic Visual Acuity Test i) =]
(c) 2014. Quevedo, Aznar-Casanova, Solé y G*-Gimenez
Direction
> A 4 K
50 45 ®90 135
€« K ¥ N

D180 © 225 © 270 @ 315

Swinging

K> . :
M, Start Size Series |

I * Start Speed Series |

Current Settings  Load Defauts
Display Test Configuration

Resolution: 1920x1080px 32bits  Octotype: /Diana20_ng176.bw
Hz: 60 Background:|

Size: 535 x 300(mm) Advance: 2

" 0,33 m/s Distance: 50

I Display Settings | | Test Settings |

Bernell’s Rotator
The dynamic visual acuity values are The DynVA is a computer software designed to assess DVA.

recorded as a combination of visual The researcher can select the optotype to be presented in
acuity and speed in rpm. the two forms of the test: (a)Size Series; (b) Speed Series.

-+

Different

Neuroscience:  Computer vision:
Human simple symbol on high- Machine Vvarioustargets in large-
contrast background scale datasets

#+ S. Hu, X. Zhao, Y. Wang, et al, “Nearing or surpassing: Overall evaluation of human-machine dynamic vision ability,” Preprint, 2023.
' S. Hu, X. Zhao, and K. Huang, “Visual intelligence evaluation techniques for single object tracking: A survey (£8 F R E=FHIM T & EEIFIL T A L0R),”

Journal of Images and Graphics ( (F/EESEHZH7) , Top Chinese Journal), 2023.
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 How to evaluate dynamic visual intelligence?
» Existing research: Integrating human-machine evaluation into a unified framework for
comparison and analysis is challenging due to dlscrepanC|es across varlous research

areas.

-+

Neuroscience:
Human simple symbol on high- Machine various targets in large-

contrast background scale datasety

Computer vision:

bounding box center distance

Human- machme - -
Cooperation bounding box center distance

EXECUTOR ENVIRONMENT EVALUATION

» Keypoint: Designing a universal framework for evaluating dynamic visual abilities in

humans and machines.

#* 8. Hu, X. Zhao, Y. Wang, et al, “Nearing or surpassing: Overall evaluation of human-machine dynamic vision ability,” Preprint, 2023.
8. Hu, X. Zhao, and K. Huang, “Visual intelligence evaluation techniques for single object tracking: A survey (58 G EriREFHIN i &2 51 FIL AR ZER),”

Journal of Images and Graphics ( (F/EESEHZH7) , Top Chinese Journal), 2023.
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 How to evaluate dynamic visual intelligence?

» Environment:
* Provide a thorough evaluation environment of the perceptual, cognitive,

and robust tracking abilities of humans and machines.
O 87 sequences, 17 themes, 245k frames

quickly build a task space
based on research goals

Table 1: Information on environment settings.

Task Settings Ability i Group Frames
1

Short-term tracking Perception 1 A S00-1.000

(Target presents from beginning to end) » B T.000-2 000

Long-term tracking L [§ 1,000-2 000

(Target may disappear and reappear ina single shot) Perception I~ D S.000-T0.000
~ R and | E 1,000-2,000
Global instance track’ X
(Target may disappear and mppearif:mnlﬁpkshis) coguiten | L SOOTGO0
i ¥ G 15,000-30.000

Challensi Abnormal ratio s H
ey Abnormal scale I
Short-term : Abnormul lumination 1 J
tracking with single frame Blur bounding-box Percention | K

challenging factors Chall Drastic rtio vanation foon i L $00-1.000

(Target presents face tu:s > Drastic scale vanation Ao M Y

from beginni % Drastic 11l v I—=
to end) consccative Drastic clanty vanation 1 [£)
famed Fast motion 1 P
B Low correlation coicient a Q

' S. Hu, X. Zhao, Y. Wang, et al, “Nearing or surpassing: Overall evaluation of human-machine dynamic vision ability,” Preprint, 2023.
> 8. Hu, X. Zhao, and K. Huang, “Visual intelligence evaluation techniques for single object tracking: A survey (8 B EriRE: RV i 28I FIE S R L), ”

Journal of Images and Graphics ( (F/EESEHZH7) , Top Chinese Journal), 2023.
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 How to evaluate dynamic visual intelligence?

» Executors:
* 20 representative algorithms (different architecture)
* 15 human subjects were selected to participate in the visual tracking
tasks, and their behavior was recorded (with a self-developed program by
python)

Table 2: The performance (based on NP}3) about human subjects and 20 representative models

(SNN-Siamese Neural Network. CF-Correlauon Filter. CNN-Convolutional Neural Network. Red, % ——— '_-

magenta and cyan represent the top-3 machines). 1 — n
Executor Aritciture Characteristic Score ﬁ u—-‘ : ; ::
Subject_Top - The best performance of subjects 0.891 10—

Subject_Mean - The mean performance of subjects 0.853 5 0o e memm————
Subject_Bottom - The worst performance of subjects 0.801 5 f S ——
MixFomer (Cui et al. (2022}) Custom networks Transformer-based framework 0.766 £ 07— E——
KYS (Bhat et al. (2020)) Custom networks Scene information 0.528
GlobalTrack (Huang et al.[2019}) Custom networks  Zero cumulative emror 0.645
SNN+CF Target candidate association 0718
SuperDiMP (D [ SNN+CF Probabilistic regression 0.701
PrDIMP (Danelljan eta ]m SNN+CF Probabilistic regression 0.683
DiMP (r Bhat et al. @m SNN+CF Better discriminative ability 0597 ; o o o o o
i al. | SNN+CF Combine SNN with CF 0.506 Video Frame
SNN Re-detection mechanism 0.748
SNN Anchor-free 0.635
S An‘:hor-i‘rcc 0.512 REST REST REST REST REST REST REST REST REST REST REST REST REST REST REST REST
SNN Anchor-free ) 0.480 * ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ * * * * * * *
SNN Deeper and wider backbone 0558 As "B5s "c5 'ps "Es "Fa "G1"Ha 15 "5 Tks "5 "ms ' NaToa ' pa’ aa
SNN Local search and global search 0.610
SNN Deeper backbone 0.662 Step 3. DVA Experiment
SNN Data augmentation 0528
SNN Region proposal network 0.495
SNN Originator of SNN-based trackers 0.285 Step 1. @08 Step 4.
ECO (Danelljan et al. 0171) CNN+CF Combine CNN with CF 0377 Position Play TEs"]r \}ideo Fillin A
KCF (Henriques et : 50 CF Representative CF-based method 0270 subjecto1 Adjustment Questionnaire
—

*'S. Hu, X. Zhao, Y. Wang, et al, “Nearing or surpassing: Overall evaluation of human-machine dynamic vision ability,” Preprint, 2023.
* 8. Hu, X. Zhao, and K. Huang, “Visual mtelllgence evaluation techniques for single object tracking: A survey (£ B EriRE LRIV i 2 B ErFIE S R L), ”

Journal of Images and Graphics ( (F/EESEHZH7) , Top Chinese Journal), 2023.
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 How to evaluate dynamic visual intelligence?

» Evaluation:
* Provide universal multi-granularity evaluation indicators (frame -
sequence = group) for humans and machines tailored to task
characteristics.

Eurnlple 1 (L1) Frame-level Exarnlple 2
— — e Mm——
QY. )
//.f" ‘*-H,\\ 'r-'n’ . //,,—-’ ‘*-.\\ c/..’_f—" ‘h\\\ G 2‘:"” ‘-n‘\\
/ N / N s N / N
/ A\ / hN by A / . A
! \ A / d- ! / d. !
/ \ f ‘li ! \n | \i
i A [ ] .® [ ® [ 2
Cols d - ,] cp*d - . \ c‘ i { e j
v / d? / \ / \ /
N / N / A ¥, Ay Y,
M s N Ry ’ s Va
Precision score (PRE] recision score Precision score (PRE) Nm_ﬂ_g Ecis‘nn smr!l!ﬁl

(L2) Sequence-level

EHIE Fm 0| ol[=

PRE=0, N-PRE=0 PRE=2, N-PRE=0.01 PIIE:!.! N-PRE=0.06  PRE=45,N-PRE=0.33  PRE=28, N-PRE=0.14  PRE=36,N-PRE=0.17  PRE=36, N-PRE=0.2
Aag=Y Flag=Y Flag=N Aag=N Rag=N Flag=Y
] (3] Group-level —
_ =
0 [Ple [ oo = 1 =1 0jF e ]LdC e jLd=
5 2 = 1500
L L] © || o= al O l=
Sequence N, length = 12500

#* 8. Hu, X. Zhao, Y. Wang, et al, “Nearing or surpassing: Overall evaluation of human-machine dynamic vision ability,” Preprint, 2023.

iy

' S. Hu, X. Zhao, and K. Huang, “Visual intelligence evaluation techniques for single object tracking: A survey (£8 F R E=FHIM T & EEIFIL T A L0R),”

Journal of Images and Graphics ( (F/EESEHZH7) , Top Chinese Journal), 2023.
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 How to evaluate dynamic visual intelligence?

» Comprehensive comparison of
. . . o The boxplot of ekecutors
human-machine dynamic vision (tracking resuit In o sequences)

egegs Subject_Top wee s v o vee | —
capabilities: 9 subjéctmean | @ mo o — SN
. . . ope . uman |subject_Bottom ¢ ——————— KD

* Human dynamic vision ability is P ok il s ——

overall better than most SamACNN 4 e s 8 +—
KeepTrack — #404 8¢ n—lg

algorithms' SuperDIMP 496 48 ¢ ¢ ;—I—E
* The current SOTA algorithm is S

siamRpnPP | ———— ] ]
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5 SPIT | ——i | |
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§ - i Slambw  p———— = 1]
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2 ws | ]
(= DaSiamRPN = ———] ] | |
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arom  ————— R
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2015
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' S. Hu, X. Zhao, Y. Wang, et al, “Nearing or surpassing: Overall evaluation of human-machine dynamic vision ability,” Preprint, 2023.
> 8. Hu, X. Zhao, and K. Huang, “Visual intelligence evaluation techniques for single object tracking: A survey (8 B EriRE: RV i 28I FIE S R L), ”

Journal of Images and Graphics ( (F/EESEHZH7) , Top Chinese Journal), 2023.
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 How to evaluate dynamic visual intelligence?

» Comprehensive comparison of human-machine dynamic vision capabilities:
e Algorithms are similar in perception to humans.
* There is still a certain gap in cognitive abilities between algorithms and
humans.

T ———n [T e —————
Easy 1 - Hard
. Task Difficul » . . |
: (Only Perception, Toy Example) 1 1 ty |(Perceptlon and Cognition, Human DVA) 1
---------- T R oL T
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1 Subject_Bottomn | # I suect Bottom ' [ i 1 : Sutiect_Bottomn . - 1
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' S. Hu, X. Zhao, Y. Wang, et al, “Nearing or surpassing: Overall evaluation of human-machine dynamic vision ability,” Preprint, 2023.

> 8. Hu, X. Zhao, and K. Huang, “Visual intelligence evaluation techniques for single object tracking: A survey (8 B EriRE: RV i 28I FIE S R L), ”
Journal of Images and Graphics ( (F/EESEHZH7) , Top Chinese Journal), 2023.
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 How to evaluate dynamic visual intelligence?
» Comprehensive comparison of human-machine dynamic vision capabilities:
* Task constraints (such as camera switching) have a greater impact on the
machine.
* Drastic changes in attributes between consecutive frames (such as fast
motion) are challenging for both humans and machines.

Porformance of Subject_Top.in challenging f“m’: Performance of MixFormer In challenging tactors 1
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I Trend 4. More Intelligent Evaluation

 How to evaluate dynamic visual intelligence?

» Human Subject Performance Analysis:
 Human subjects also make careless mistakes.
* The questionnaire showed that most subjects found it difficult to track fast-
moving targets and small targets.

Performpnce of Group 2
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I Trend 4. More Intelligent Evaluation

 How to evaluate dynamic visual intelligence?

» A simple human-machine collaboration experiment:

#0001 #1124 #1125 #2376 #2753 #3761 #4461 #5149

SHOT-CUT
Machine

ABSENT

#3761

Human-machine
Cooperation

ABSERIT
* Asimple human-machine collaboration experiment shows that dynamic visual
capabilities: machine < human < human-machine collaboration.

* In dynamic vision tasks, humans and machines each have their own strengths
and have the p055|b|I|ty of collaboration.
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I Future Work

IE:IA Evaluation

4

Decoupling visual capabilities:

* The visual object tracking task involves the coupling of
multiple capabilities such as observation, memory, and
reasoning.

* Therefore, the task can be further decomposed, and
the intelligence of the algorithm can be more
comprehensively analyzed and evaluated through a
fine-grained evaluation scheme.

Algorithm |[j|




I Future Work

IE:IA Evaluation

g

Optimize the measurement method:

* Use a high-precision eye
trackerand setuparigorous 2 22
eye movement experiment §
environment, or design a
new human visual tracking
ability measurement
solution (such as conducting
experiments based on a
mouse or touch screen).

Algorithm |[j|

https://reflexion.co/
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Exploring the characteristics of the subjects:

» Studies have shown that factors such as the subjects'
physiological characteristics, cognitive state, and
personal traits all have a certain impact on dynamic
visual ability.

* How to select task objects based on the characteristics
of the subjects to ensure that the subject group is
representative is worthy of further analysis by
researchers.

Algorithm |[j|
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Visual modality target tracking algorithm:

* It can explore a better mechanism for utilizing
dynamic visual information and strike a balance
between the effective utilization of accumulated errors

and temporal dependencies.
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Multimodal target tracking algorithm:

 Mature basic models in the fields of natural language
processing and static vision can be introduced to
improve the limitations of the algorithm in long text
processing and multimodal information alignment.




I Future Work
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N

Expanding the human-machine collaboration
mechanism:

The human-machine collaboration mechanism can be
further expanded to provide support for downstream
tasks and practical applications. For example, multiple
rounds of human-machine interaction experiments
can be conducted during a single tracking process to
observe whether the machine model's understanding
of human intentions changes during the tracking
process.
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